On the coincidence of the spectra of random elliptic operators
Sbornik. Mathematics, Tome 51 (1985) no. 2, pp. 455-471

Voir la notice de l'article provenant de la source Math-Net.Ru

A random elliptic operator of positive order is considered, whose coefficients are realizations of a homogeneous random field on $\mathbf R^n$ given by a dynamical system satisfying an aperiodicity condition indicating the absence of nontrivial periods of the corresponding unitary group. For such an operator, the coincidence of its spectra in $L^2(\mathbf R^n)$ and in the Hilbert space of homogeneous random fields is proved. Bibliography: 21 titles.
@article{SM_1985_51_2_a8,
     author = {S. M. Kozlov and M. A. Shubin},
     title = {On the coincidence of the spectra of random elliptic operators},
     journal = {Sbornik. Mathematics},
     pages = {455--471},
     publisher = {mathdoc},
     volume = {51},
     number = {2},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_51_2_a8/}
}
TY  - JOUR
AU  - S. M. Kozlov
AU  - M. A. Shubin
TI  - On the coincidence of the spectra of random elliptic operators
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 455
EP  - 471
VL  - 51
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1985_51_2_a8/
LA  - en
ID  - SM_1985_51_2_a8
ER  - 
%0 Journal Article
%A S. M. Kozlov
%A M. A. Shubin
%T On the coincidence of the spectra of random elliptic operators
%J Sbornik. Mathematics
%D 1985
%P 455-471
%V 51
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1985_51_2_a8/
%G en
%F SM_1985_51_2_a8
S. M. Kozlov; M. A. Shubin. On the coincidence of the spectra of random elliptic operators. Sbornik. Mathematics, Tome 51 (1985) no. 2, pp. 455-471. http://geodesic.mathdoc.fr/item/SM_1985_51_2_a8/