On algebraic independence of algebraic powers of algebraic numbers
Sbornik. Mathematics, Tome 51 (1985) no. 2, pp. 429-454

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that among the numbers $\alpha^\beta,\alpha^{\beta^2},\dots,\alpha^{\beta^{d-1}}$, where $\alpha$ is algebraic, $\alpha\ne0,1$ and $\beta$ is algebraic of degree $d\geqslant2$, there are no fewer than $[\log_2(d+1)]$ which are algebraically independent over $\mathbf Q$. Bibliography: 17 titles.
@article{SM_1985_51_2_a7,
     author = {Yu. V. Nesterenko},
     title = {On algebraic independence of algebraic powers of algebraic numbers},
     journal = {Sbornik. Mathematics},
     pages = {429--454},
     publisher = {mathdoc},
     volume = {51},
     number = {2},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_51_2_a7/}
}
TY  - JOUR
AU  - Yu. V. Nesterenko
TI  - On algebraic independence of algebraic powers of algebraic numbers
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 429
EP  - 454
VL  - 51
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1985_51_2_a7/
LA  - en
ID  - SM_1985_51_2_a7
ER  - 
%0 Journal Article
%A Yu. V. Nesterenko
%T On algebraic independence of algebraic powers of algebraic numbers
%J Sbornik. Mathematics
%D 1985
%P 429-454
%V 51
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1985_51_2_a7/
%G en
%F SM_1985_51_2_a7
Yu. V. Nesterenko. On algebraic independence of algebraic powers of algebraic numbers. Sbornik. Mathematics, Tome 51 (1985) no. 2, pp. 429-454. http://geodesic.mathdoc.fr/item/SM_1985_51_2_a7/