On algebraic independence of algebraic powers of algebraic numbers
Sbornik. Mathematics, Tome 51 (1985) no. 2, pp. 429-454 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that among the numbers $\alpha^\beta,\alpha^{\beta^2},\dots,\alpha^{\beta^{d-1}}$, where $\alpha$ is algebraic, $\alpha\ne0,1$ and $\beta$ is algebraic of degree $d\geqslant2$, there are no fewer than $[\log_2(d+1)]$ which are algebraically independent over $\mathbf Q$. Bibliography: 17 titles.
@article{SM_1985_51_2_a7,
     author = {Yu. V. Nesterenko},
     title = {On algebraic independence of algebraic powers of algebraic numbers},
     journal = {Sbornik. Mathematics},
     pages = {429--454},
     year = {1985},
     volume = {51},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_51_2_a7/}
}
TY  - JOUR
AU  - Yu. V. Nesterenko
TI  - On algebraic independence of algebraic powers of algebraic numbers
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 429
EP  - 454
VL  - 51
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1985_51_2_a7/
LA  - en
ID  - SM_1985_51_2_a7
ER  - 
%0 Journal Article
%A Yu. V. Nesterenko
%T On algebraic independence of algebraic powers of algebraic numbers
%J Sbornik. Mathematics
%D 1985
%P 429-454
%V 51
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1985_51_2_a7/
%G en
%F SM_1985_51_2_a7
Yu. V. Nesterenko. On algebraic independence of algebraic powers of algebraic numbers. Sbornik. Mathematics, Tome 51 (1985) no. 2, pp. 429-454. http://geodesic.mathdoc.fr/item/SM_1985_51_2_a7/

[1] Burbaki N., Kommutativnaya algebra, Mir, M., 1971 | MR

[2] Gelfond A. O., “O sedmoi probleme D. Gilberta”, DAN SSSR, 2:1 (1934), 1–6 | Zbl

[3] Gelfond A. O., “Ob algebraicheskoi nezavisimosti algebraicheskikh stepenei algebraicheskikh chisel”, DAN SSSR, 64:3 (1949), 277–280 | MR | Zbl

[4] Gelfond A. O., Transtsendentnye i algebraicheskie chisla, Gostekhizdat, M., 1952

[5] Nesterenko Yu. V., “Otsenki poryadkov nulei funktsii odnogo klassa i ikh prilozhenie v teorii transtsendentnykh chisel”, Izv. AN SSSR. Seriya matem., 41 (1977), 253–284 | MR | Zbl

[6] Nesterenko Yu. V., “Otsenki kharakteristicheskoi funktsii prostogo ideala”, Matem. sb., 123 (165) (1983), 11–34 | MR

[7] Chudnovskii G. V., “Algebraicheskaya nezavisimost neskolkikh znachenii pokazatelnoi funktsii”, Matem. zametki, 15:4 (1974), 661–672

[8] Chudnovskii G. V., Analiticheskie metody v diofantovykh priblizheniyakh, Preprint IM-74-8, IM-74-9, Kiev, 1974 | MR

[9] Shmelev A. A., “K voprosu ob algebraicheskoi nezavisimosti algebraicheskikh stepenei algebraicheskikh chisel”, Matem. zametki, 11:6 (1972), 635–644 | Zbl

[10] Brownawell D., “Gelfondś method for algebraic independence”, Trans. Amer. Math. Soc., 210 (1975), 1–26 | DOI | MR | Zbl

[11] Choodnovsky G. V., “Algebraic independence of values of exponential and elliptic functions”, Proc. Int. Congr. Math., Helsinki, 1978, 339–350 | MR

[12] Philippon P., “Independance algebrique de valuers de fonctions exponentielles $p$-adiques”, J. reine angew. Math., 329 (1981), 42–51 | MR | Zbl

[13] Reyssat E., “Un critere dindependance algebrique”, J. reine angew. Math., 329 (1981), 66–81 | MR | Zbl

[14] Schneider Th., “Transzendenzuntersuchungen periodischer Functionen”, I.-J. reine und angew. Math., 172 (1934), 65–69 | Zbl

[15] Tijdeman R., “An auxiliary result in the theory of transcendental numbers”, J. Number Theory, 5 (1973), 80–94 | DOI | MR | Zbl

[16] Waldschmidt M., Independance algebrique par la methode de G. V. Choodnovsky, Semin. Delange–Pisot–Poitou, 1974/75, No G8

[17] Waldschmidt M, Suites colores, Semin. Delange–Pisot–Poitou, 1975/76, No G21