On algebraic independence of algebraic powers of algebraic numbers
Sbornik. Mathematics, Tome 51 (1985) no. 2, pp. 429-454
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that among the numbers $\alpha^\beta,\alpha^{\beta^2},\dots,\alpha^{\beta^{d-1}}$, where $\alpha$ is algebraic, $\alpha\ne0,1$ and $\beta$ is algebraic of degree $d\geqslant2$, there are no fewer than $[\log_2(d+1)]$ which are algebraically independent over $\mathbf Q$.
Bibliography: 17 titles.
@article{SM_1985_51_2_a7,
author = {Yu. V. Nesterenko},
title = {On algebraic independence of algebraic powers of algebraic numbers},
journal = {Sbornik. Mathematics},
pages = {429--454},
publisher = {mathdoc},
volume = {51},
number = {2},
year = {1985},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1985_51_2_a7/}
}
Yu. V. Nesterenko. On algebraic independence of algebraic powers of algebraic numbers. Sbornik. Mathematics, Tome 51 (1985) no. 2, pp. 429-454. http://geodesic.mathdoc.fr/item/SM_1985_51_2_a7/