The tensor algebra of the identity representation as a~module over the Lie superalgebras $\mathfrak Gl(n,m)$ and~$Q(n)$
Sbornik. Mathematics, Tome 51 (1985) no. 2, pp. 419-427

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $T$ be the tensor algebra of the identity representation of the Lie superalgebras in the series $\mathfrak Gl$ and $Q$. The method of Weyl is used to construct a correspondence between the irreducible representations (respectively, the irreducible projective representations) of the symmetric group and the irreducible $\mathfrak Gl$- (respectively, $Q$-) submodules of $T$. The properties of the representations are studied on the basis of this correspondence. A formula is given for the characters on the irreducible $Q$-submodules of $T$. Bibliography: 8 titles.
@article{SM_1985_51_2_a6,
     author = {A. N. Sergeev},
     title = {The tensor algebra of the identity representation as a~module over the {Lie} superalgebras $\mathfrak Gl(n,m)$ and~$Q(n)$},
     journal = {Sbornik. Mathematics},
     pages = {419--427},
     publisher = {mathdoc},
     volume = {51},
     number = {2},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_51_2_a6/}
}
TY  - JOUR
AU  - A. N. Sergeev
TI  - The tensor algebra of the identity representation as a~module over the Lie superalgebras $\mathfrak Gl(n,m)$ and~$Q(n)$
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 419
EP  - 427
VL  - 51
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1985_51_2_a6/
LA  - en
ID  - SM_1985_51_2_a6
ER  - 
%0 Journal Article
%A A. N. Sergeev
%T The tensor algebra of the identity representation as a~module over the Lie superalgebras $\mathfrak Gl(n,m)$ and~$Q(n)$
%J Sbornik. Mathematics
%D 1985
%P 419-427
%V 51
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1985_51_2_a6/
%G en
%F SM_1985_51_2_a6
A. N. Sergeev. The tensor algebra of the identity representation as a~module over the Lie superalgebras $\mathfrak Gl(n,m)$ and~$Q(n)$. Sbornik. Mathematics, Tome 51 (1985) no. 2, pp. 419-427. http://geodesic.mathdoc.fr/item/SM_1985_51_2_a6/