The tensor algebra of the identity representation as a module over the Lie superalgebras $\mathfrak Gl(n,m)$ and $Q(n)$
Sbornik. Mathematics, Tome 51 (1985) no. 2, pp. 419-427 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $T$ be the tensor algebra of the identity representation of the Lie superalgebras in the series $\mathfrak Gl$ and $Q$. The method of Weyl is used to construct a correspondence between the irreducible representations (respectively, the irreducible projective representations) of the symmetric group and the irreducible $\mathfrak Gl$- (respectively, $Q$-) submodules of $T$. The properties of the representations are studied on the basis of this correspondence. A formula is given for the characters on the irreducible $Q$-submodules of $T$. Bibliography: 8 titles.
@article{SM_1985_51_2_a6,
     author = {A. N. Sergeev},
     title = {The tensor algebra of the identity representation as a~module over the {Lie} superalgebras $\mathfrak Gl(n,m)$ and~$Q(n)$},
     journal = {Sbornik. Mathematics},
     pages = {419--427},
     year = {1985},
     volume = {51},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_51_2_a6/}
}
TY  - JOUR
AU  - A. N. Sergeev
TI  - The tensor algebra of the identity representation as a module over the Lie superalgebras $\mathfrak Gl(n,m)$ and $Q(n)$
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 419
EP  - 427
VL  - 51
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1985_51_2_a6/
LA  - en
ID  - SM_1985_51_2_a6
ER  - 
%0 Journal Article
%A A. N. Sergeev
%T The tensor algebra of the identity representation as a module over the Lie superalgebras $\mathfrak Gl(n,m)$ and $Q(n)$
%J Sbornik. Mathematics
%D 1985
%P 419-427
%V 51
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1985_51_2_a6/
%G en
%F SM_1985_51_2_a6
A. N. Sergeev. The tensor algebra of the identity representation as a module over the Lie superalgebras $\mathfrak Gl(n,m)$ and $Q(n)$. Sbornik. Mathematics, Tome 51 (1985) no. 2, pp. 419-427. http://geodesic.mathdoc.fr/item/SM_1985_51_2_a6/

[1] Veil G., Klassicheskie gruppy, ikh invarianty i predstavleniya, IL, M., 1947

[2] Dzheims G., Teoriya predstavlenii simmetricheskikh grupp, Mir, M., 1982 | MR

[3] Leites D. A., “Vvedenie v teoriyu supermnogoobrazii”, UMN, 35:1 (1980), 3–57 | MR | Zbl

[4] Morris A. O., “The spin representation of the symmetric group”, Proc. London Math. Soc. (3), 12 (1962), 55–76 | DOI | MR | Zbl

[5] Morris A. O., “A survey on Hall–Littlwood functions and their application to representation theory”, Lect. Notes Math., 579 (1977), 136–154 | DOI | MR | Zbl

[6] Shur I., “Über die Darstellang der symmetrishen und der alternierden Grouppe durch gebrochene lineare Substitutionen”, J. Rein. Angew. Math., 139 (1911), 155–250

[7] Balantekin A., Bars I., “Dimention and charakter formulas for Lie supergroups”, J. Math. Phys., 22 (1981), 1149–1162 | DOI | MR | Zbl

[8] Balantekin A., Bars I., “Anomalies and eigenvalues of Cazimir operators for Lie groups and supergroups”, J. Math. Phys., 22 (1981), 1810–1818 | DOI | MR | Zbl