Graphs with polynomial growth
Sbornik. Mathematics, Tome 51 (1985) no. 2, pp. 405-417

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Gamma$ be a connected locally finite vertex-symmetric graph, $R(n)$ the number of vertices of $\Gamma$ at a distance not more than $n$ from some fixed vertex. The equivalence of the following assertions is proved: (a) $R(n)$ is bounded above by a polynomial; (b) there is an imprimitivity system $\sigma$ with finite blocks of $\operatorname{Aut}\Gamma$ on the set of vertices of $\Gamma$ such that $\operatorname{Aut}\Gamma/\sigma$ is finitely generated nilpotent-by-finite and the stabilizer of a vertex of $\Gamma/\sigma$ in $\operatorname{Aut}\Gamma/\sigma$ is finite. Thus, in a certain sense, a description is obtained of the connected locally finite vertex-symmetric graphs with polynomial growth. Bibliography: 8 titles.
@article{SM_1985_51_2_a5,
     author = {V. I. Trofimov},
     title = {Graphs with polynomial growth},
     journal = {Sbornik. Mathematics},
     pages = {405--417},
     publisher = {mathdoc},
     volume = {51},
     number = {2},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_51_2_a5/}
}
TY  - JOUR
AU  - V. I. Trofimov
TI  - Graphs with polynomial growth
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 405
EP  - 417
VL  - 51
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1985_51_2_a5/
LA  - en
ID  - SM_1985_51_2_a5
ER  - 
%0 Journal Article
%A V. I. Trofimov
%T Graphs with polynomial growth
%J Sbornik. Mathematics
%D 1985
%P 405-417
%V 51
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1985_51_2_a5/
%G en
%F SM_1985_51_2_a5
V. I. Trofimov. Graphs with polynomial growth. Sbornik. Mathematics, Tome 51 (1985) no. 2, pp. 405-417. http://geodesic.mathdoc.fr/item/SM_1985_51_2_a5/