A~theorem on comparison of spectra, and spectral asymptotics for a~Keldysh pencil
Sbornik. Mathematics, Tome 51 (1985) no. 2, pp. 389-404

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $H$ is a normal operator, the pencil $L_0(\lambda)=I-\lambda^nH^n$ has a discrete and positive spectrum in the domain $\Omega(2\theta,R)=\{\lambda:\lvert\arg\lambda\rvert2\theta,\ |\lambda|>R\}$, and $S(\lambda)$ is an operator-valued function that is holomorphic in $\Omega(2\theta,R)$ and small in comparison to $L_0(\lambda)$ (in a certain sense). A theorem is proved on comparison of the spectra of $L(\lambda)=L_0(\lambda)-S(\lambda)$ and $L_0(\lambda)$, i.e., on an estimate of the difference $N(r)-N_0(r)$, where $N(r)$ ($N_0(r)$) is the distribution function of the spectrum of $L(\lambda)$ ($L_0(\lambda)$) in $\Omega(\theta,\rho)$ ($\rho\geqslant R$). This result implies generalizations of theorems of Keldysh on the asymptotic behavior of the spectrum of a polynomial operator pencil. Bibliography: 14 titles.
@article{SM_1985_51_2_a4,
     author = {A. S. Markus and V. I. Matsaev},
     title = {A~theorem on comparison of spectra, and spectral asymptotics for {a~Keldysh} pencil},
     journal = {Sbornik. Mathematics},
     pages = {389--404},
     publisher = {mathdoc},
     volume = {51},
     number = {2},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_51_2_a4/}
}
TY  - JOUR
AU  - A. S. Markus
AU  - V. I. Matsaev
TI  - A~theorem on comparison of spectra, and spectral asymptotics for a~Keldysh pencil
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 389
EP  - 404
VL  - 51
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1985_51_2_a4/
LA  - en
ID  - SM_1985_51_2_a4
ER  - 
%0 Journal Article
%A A. S. Markus
%A V. I. Matsaev
%T A~theorem on comparison of spectra, and spectral asymptotics for a~Keldysh pencil
%J Sbornik. Mathematics
%D 1985
%P 389-404
%V 51
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1985_51_2_a4/
%G en
%F SM_1985_51_2_a4
A. S. Markus; V. I. Matsaev. A~theorem on comparison of spectra, and spectral asymptotics for a~Keldysh pencil. Sbornik. Mathematics, Tome 51 (1985) no. 2, pp. 389-404. http://geodesic.mathdoc.fr/item/SM_1985_51_2_a4/