A~theorem on comparison of spectra, and spectral asymptotics for a~Keldysh pencil
Sbornik. Mathematics, Tome 51 (1985) no. 2, pp. 389-404
Voir la notice de l'article provenant de la source Math-Net.Ru
Suppose that $H$ is a normal operator, the pencil $L_0(\lambda)=I-\lambda^nH^n$ has a discrete and positive spectrum in the domain $\Omega(2\theta,R)=\{\lambda:\lvert\arg\lambda\rvert2\theta,\ |\lambda|>R\}$, and $S(\lambda)$ is an operator-valued function that is holomorphic in $\Omega(2\theta,R)$ and small in comparison to $L_0(\lambda)$ (in a certain sense). A theorem is proved on comparison of the spectra of $L(\lambda)=L_0(\lambda)-S(\lambda)$ and $L_0(\lambda)$, i.e., on an estimate of the difference $N(r)-N_0(r)$, where $N(r)$ ($N_0(r)$) is the distribution function of the spectrum of $L(\lambda)$ ($L_0(\lambda)$) in $\Omega(\theta,\rho)$ ($\rho\geqslant R$). This result implies generalizations of theorems of Keldysh on the asymptotic behavior of the spectrum of a polynomial operator pencil.
Bibliography: 14 titles.
@article{SM_1985_51_2_a4,
author = {A. S. Markus and V. I. Matsaev},
title = {A~theorem on comparison of spectra, and spectral asymptotics for {a~Keldysh} pencil},
journal = {Sbornik. Mathematics},
pages = {389--404},
publisher = {mathdoc},
volume = {51},
number = {2},
year = {1985},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1985_51_2_a4/}
}
TY - JOUR AU - A. S. Markus AU - V. I. Matsaev TI - A~theorem on comparison of spectra, and spectral asymptotics for a~Keldysh pencil JO - Sbornik. Mathematics PY - 1985 SP - 389 EP - 404 VL - 51 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1985_51_2_a4/ LA - en ID - SM_1985_51_2_a4 ER -
A. S. Markus; V. I. Matsaev. A~theorem on comparison of spectra, and spectral asymptotics for a~Keldysh pencil. Sbornik. Mathematics, Tome 51 (1985) no. 2, pp. 389-404. http://geodesic.mathdoc.fr/item/SM_1985_51_2_a4/