Independence of automorphisms groups and lattices of ideals of semigroups
Sbornik. Mathematics, Tome 51 (1985) no. 2, pp. 345-366 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The independence of automorphism groups and lattices of ideals is proved in the class of all semigroups. Bibliography: 12 titles.
@article{SM_1985_51_2_a2,
     author = {V. A. Baranskii},
     title = {Independence of automorphisms groups and lattices of ideals of semigroups},
     journal = {Sbornik. Mathematics},
     pages = {345--366},
     year = {1985},
     volume = {51},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_51_2_a2/}
}
TY  - JOUR
AU  - V. A. Baranskii
TI  - Independence of automorphisms groups and lattices of ideals of semigroups
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 345
EP  - 366
VL  - 51
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1985_51_2_a2/
LA  - en
ID  - SM_1985_51_2_a2
ER  - 
%0 Journal Article
%A V. A. Baranskii
%T Independence of automorphisms groups and lattices of ideals of semigroups
%J Sbornik. Mathematics
%D 1985
%P 345-366
%V 51
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1985_51_2_a2/
%G en
%F SM_1985_51_2_a2
V. A. Baranskii. Independence of automorphisms groups and lattices of ideals of semigroups. Sbornik. Mathematics, Tome 51 (1985) no. 2, pp. 345-366. http://geodesic.mathdoc.fr/item/SM_1985_51_2_a2/

[1] Baranskii V. A., “O nezavisimosti proizvodnykh struktur algebraicheskikh sistem”, Izv. VUZov. Matem., 11 (1982), 75–77 | MR | Zbl

[2] Birkhoff G., “Sobre los grupos de automorphismos”, Rev. Union Mat. Argentina, 11 (1946), 155–157 | MR | Zbl

[3] Rhodes J., “Reserch problem No 24”, Semigroup Forum, 5 (1972), 92 | DOI | MR

[4] Hall T. E., “The partially ordered set of all $\mathcal{G}$-classes of a finite semigroup”, Semigroup Forum, 6 (1973), 263–264 | DOI | MR | Zbl

[5] Ash C. J., Hall T. E., “Inverse semigroup on graphs”, Semigroup Forum, 11 (1975), 140–145 | DOI | MR

[6] Ash C. J., “Uniform labelled semilattices”, J. Austral. Math. Soc. (Ser. A), 28 (1979), 385–397 | DOI | MR | Zbl

[7] Meakin J., “The partially ordered set of $\mathcal{G}$-classes of a semigroup”, J. London Math. Soc. (2), 21 (1980), 244–256 | DOI | MR | Zbl

[8] Crawley P., Dilworth R. P., Algebraic Theory of Lattices, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1973, 201 pp. | Zbl

[9] Ash C. J., “The lattices of ideals of a semigroup”, Algebra Univ., 10 (1980), 395–398 | DOI | MR | Zbl

[10] Klifford A., Preston G., Algebraicheskaya teoriya polugrupp, Mir, M., 1972 | Zbl

[11] Munn W. D., “Fundamental inverse semigroups”, Quarterly J. Math. Oxford (2), 21 (1970), 157–170 | DOI | MR | Zbl

[12] Byleen K., Komjath P., “The admissible trace problem for $E$-unitary inverse semigroups”, Semigroup Forum, 15 (1978), 235–246 | DOI | MR | Zbl