Flows on compact solvmanifolds
Sbornik. Mathematics, Tome 51 (1985) no. 2, pp. 549-556
Voir la notice de l'article provenant de la source Math-Net.Ru
The author proves that any $G$-induced flow on a compact solvable homogeneous space $G/D$ is ergodic on a submanifold $P(x)\subset G/D$. For almost any flow the closure of the orbit of the fixed point $\exp(tx)D$ is the submanifold $P(x)\subset G/D$.
Bibliography: 10 titles.
@article{SM_1985_51_2_a13,
author = {A. N. Starkov},
title = {Flows on compact solvmanifolds},
journal = {Sbornik. Mathematics},
pages = {549--556},
publisher = {mathdoc},
volume = {51},
number = {2},
year = {1985},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1985_51_2_a13/}
}
A. N. Starkov. Flows on compact solvmanifolds. Sbornik. Mathematics, Tome 51 (1985) no. 2, pp. 549-556. http://geodesic.mathdoc.fr/item/SM_1985_51_2_a13/