Flows on compact solvmanifolds
Sbornik. Mathematics, Tome 51 (1985) no. 2, pp. 549-556

Voir la notice de l'article provenant de la source Math-Net.Ru

The author proves that any $G$-induced flow on a compact solvable homogeneous space $G/D$ is ergodic on a submanifold $P(x)\subset G/D$. For almost any flow the closure of the orbit of the fixed point $\exp(tx)D$ is the submanifold $P(x)\subset G/D$. Bibliography: 10 titles.
@article{SM_1985_51_2_a13,
     author = {A. N. Starkov},
     title = {Flows on compact solvmanifolds},
     journal = {Sbornik. Mathematics},
     pages = {549--556},
     publisher = {mathdoc},
     volume = {51},
     number = {2},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_51_2_a13/}
}
TY  - JOUR
AU  - A. N. Starkov
TI  - Flows on compact solvmanifolds
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 549
EP  - 556
VL  - 51
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1985_51_2_a13/
LA  - en
ID  - SM_1985_51_2_a13
ER  - 
%0 Journal Article
%A A. N. Starkov
%T Flows on compact solvmanifolds
%J Sbornik. Mathematics
%D 1985
%P 549-556
%V 51
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1985_51_2_a13/
%G en
%F SM_1985_51_2_a13
A. N. Starkov. Flows on compact solvmanifolds. Sbornik. Mathematics, Tome 51 (1985) no. 2, pp. 549-556. http://geodesic.mathdoc.fr/item/SM_1985_51_2_a13/