Orbital analytic nonequivalence of saddle resonance vector fields in $(\mathbf C^2,0)$
Sbornik. Mathematics, Tome 51 (1985) no. 2, pp. 533-547 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article examines germs of holomorphic vector fields fo the form $$ z\frac\partial{\partial z}+w(-1+zw+z^2w^2P(z,w))\frac\partial{\partial w} $$ under the assumption that the support of the power series $P(z,w)$ lies either above the bisector of the first quadrant of the integer lattice $\mathbf Z_+^2$, or below it. Necessary conditions (imposed on the coefficients of $P(z,w)$) are formulated for orbital analytic equivalence of vector fields of the type indicated; these are obtained with the help of approximate calculation of the Écalle–Voronin functional moduli for the analytic classification of germs of holomorphic mappings which are monodromy transformations of the vector fields considered. Bibliography: 18 titles.
@article{SM_1985_51_2_a12,
     author = {P. M. Elizarov},
     title = {Orbital analytic nonequivalence of saddle resonance vector fields in~$(\mathbf C^2,0)$},
     journal = {Sbornik. Mathematics},
     pages = {533--547},
     year = {1985},
     volume = {51},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_51_2_a12/}
}
TY  - JOUR
AU  - P. M. Elizarov
TI  - Orbital analytic nonequivalence of saddle resonance vector fields in $(\mathbf C^2,0)$
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 533
EP  - 547
VL  - 51
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1985_51_2_a12/
LA  - en
ID  - SM_1985_51_2_a12
ER  - 
%0 Journal Article
%A P. M. Elizarov
%T Orbital analytic nonequivalence of saddle resonance vector fields in $(\mathbf C^2,0)$
%J Sbornik. Mathematics
%D 1985
%P 533-547
%V 51
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1985_51_2_a12/
%G en
%F SM_1985_51_2_a12
P. M. Elizarov. Orbital analytic nonequivalence of saddle resonance vector fields in $(\mathbf C^2,0)$. Sbornik. Mathematics, Tome 51 (1985) no. 2, pp. 533-547. http://geodesic.mathdoc.fr/item/SM_1985_51_2_a12/

[1] Bryuno A. D., “Analiticheskaya forma differentsialnykh uravnenii”, Trudy MMO, 25, 1971, 119–262 ; 26, 199–239 | Zbl | Zbl

[2] Ilyashenko Yu. S., “V teorii normalnykh form analiticheskikh uravnenii pri narushenii uslovii A. D. Bryuno raskhodimost – pravilo, skhodimost – isklyuchenie”, Vestn. MGU. Seriya matem., mekh., 1981, no. 2, 10–16 | MR | Zbl

[3] Bryuno A. D., “O raskhodimosti veschestvennogo normalizuyuschego preobrazovaniya”, Matem. zametki, 31:3 (1982), 403–410 | MR | Zbl

[4] Martinet J., Normalization des champs de vecteur holomorhes, Seminaire Bourbaki 33e annee, N. 564, 1980–1981

[5] Ilyashenko Yu. S., Osobye tochki i predelnye tsikly differentsialnykh uravnenii na veschestvennoi i kompleksnoi ploskosti, Preprint NIVTs AN SSSR, ONTI NIVTs AN SSSR, Puschino, 1982 | MR

[6] Ecalle J., “Theorie iterative. Introduction a la theorie des invariants holomorphes”, J. Math. Pures et Appl., 54 (1975), 183–258 | MR | Zbl

[7] Ecalle J., Theorie des invariants holomorphes., Publ. Math. d'Orsay. N 67–74.09

[8] Voronin, S. M., “Analiticheskaya klassifikatsiya rostkov konformnykh otobrazhenii $(\mathbf{C},0)\to(\mathbf{C},0)$ s tozhdestvennoi lineinoi chastyu”, Funkts. analiz, 15:1 (1981), 1–17 | MR | Zbl

[9] Malgrange B., “Travaux d'Ecalle et de Martinet”, Ramis sur les systems dynamiques, Seminaire Bourbaki, 34e annee, N 582, 1981–1982

[10] Ecalle J., Les fonctions resurgentes. Tome II: Les fonctions resurgents appliquees a l'iteration., Publ. Math. d'Orsay, 1981 | MR

[11] Scherbakov A. A., “O rostkakh otobrazhenii, analiticheski ne ekvivalentnykh svoei formalnoi normalnoi forme”, Funkts. analiz, 16:2 (1982), 94–95 | MR | Zbl

[12] Camacho C, Sad P., Topological classification and bifurcation of holomorphic flows with resonances in $\mathbf{C}^2$., Preprint I.H.E.S., IHES, Janvier, Bures sur Yvette, 1981 | MR

[13] Petrovskii I. G., Landis E. M., “O chisle predelnykh tsiklov uravneniya $\frac{dy}{dx}= \frac{P(x,y)}{Q(x,y)}$ gde $P$ i $Q$ – mnogochleny 2-i stepeni”, Matem. sb., 37(79) (1955), 209–250 | MR | Zbl

[14] Ilyashenko Yu. S., “Topologiya fazovykh portretov analiticheskikh differentsialnykh uravnenii na kompleksnoi proektivnoi ploskosti”, Trudy seminara im. I. G. Petrovskogo, 4, 1978, 83–136 | MR | Zbl

[15] Ilyashenko Yu. S, Pyartli A. S., “Materializatsiya rezonansov i raskhodimost normalizuyuschikh ryadov dlya polinomialnykh differentsialnykh uravnenii”, Trudy seminara im. I. G. Petrovskogo, 8, 1982, 111–127 | MR | Zbl

[16] Arnold V. I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978 | MR

[17] Evgrafov M. A., Asimptoticheskie otsenki i tselye funktsii, GITTL, M., 1957

[18] Elizarov P. M., Ilyashenko Yu. S., “Zamechaniya ob orbitalnoi analiticheskoi klassifikatsii rostkov vektornykh polei”, Matem. sb., 121 (163) (1983), 111–126 | MR