Orbital analytic nonequivalence of saddle resonance vector fields in~$(\mathbf C^2,0)$
Sbornik. Mathematics, Tome 51 (1985) no. 2, pp. 533-547

Voir la notice de l'article provenant de la source Math-Net.Ru

This article examines germs of holomorphic vector fields fo the form $$ z\frac\partial{\partial z}+w(-1+zw+z^2w^2P(z,w))\frac\partial{\partial w} $$ under the assumption that the support of the power series $P(z,w)$ lies either above the bisector of the first quadrant of the integer lattice $\mathbf Z_+^2$, or below it. Necessary conditions (imposed on the coefficients of $P(z,w)$) are formulated for orbital analytic equivalence of vector fields of the type indicated; these are obtained with the help of approximate calculation of the Écalle–Voronin functional moduli for the analytic classification of germs of holomorphic mappings which are monodromy transformations of the vector fields considered. Bibliography: 18 titles.
@article{SM_1985_51_2_a12,
     author = {P. M. Elizarov},
     title = {Orbital analytic nonequivalence of saddle resonance vector fields in~$(\mathbf C^2,0)$},
     journal = {Sbornik. Mathematics},
     pages = {533--547},
     publisher = {mathdoc},
     volume = {51},
     number = {2},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_51_2_a12/}
}
TY  - JOUR
AU  - P. M. Elizarov
TI  - Orbital analytic nonequivalence of saddle resonance vector fields in~$(\mathbf C^2,0)$
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 533
EP  - 547
VL  - 51
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1985_51_2_a12/
LA  - en
ID  - SM_1985_51_2_a12
ER  - 
%0 Journal Article
%A P. M. Elizarov
%T Orbital analytic nonequivalence of saddle resonance vector fields in~$(\mathbf C^2,0)$
%J Sbornik. Mathematics
%D 1985
%P 533-547
%V 51
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1985_51_2_a12/
%G en
%F SM_1985_51_2_a12
P. M. Elizarov. Orbital analytic nonequivalence of saddle resonance vector fields in~$(\mathbf C^2,0)$. Sbornik. Mathematics, Tome 51 (1985) no. 2, pp. 533-547. http://geodesic.mathdoc.fr/item/SM_1985_51_2_a12/