The asymptotic distribution of lattice points belonging to given residue classes on hyperboloids of special form
Sbornik. Mathematics, Tome 51 (1985) no. 2, pp. 507-532
Voir la notice de l'article provenant de la source Math-Net.Ru
Under the assumption of a nontrivial shift of the zeros of Dirichlet $L$-series with quadratic character, asymptotic formulas are obtained for the number of lattice points in arbitrary regions on the hyperboloid $n=A\mathbf b^2+\mathbf{ac}$ belonging to given residue classes. A method for applying the results to the study of the distribution of lattice points on general second-order surfaces is outlined.
Bibliography: 19 titles.
@article{SM_1985_51_2_a11,
author = {E. P. Golubeva},
title = {The asymptotic distribution of lattice points belonging to given residue classes on hyperboloids of special form},
journal = {Sbornik. Mathematics},
pages = {507--532},
publisher = {mathdoc},
volume = {51},
number = {2},
year = {1985},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1985_51_2_a11/}
}
TY - JOUR AU - E. P. Golubeva TI - The asymptotic distribution of lattice points belonging to given residue classes on hyperboloids of special form JO - Sbornik. Mathematics PY - 1985 SP - 507 EP - 532 VL - 51 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1985_51_2_a11/ LA - en ID - SM_1985_51_2_a11 ER -
E. P. Golubeva. The asymptotic distribution of lattice points belonging to given residue classes on hyperboloids of special form. Sbornik. Mathematics, Tome 51 (1985) no. 2, pp. 507-532. http://geodesic.mathdoc.fr/item/SM_1985_51_2_a11/