Theorems of Tauberian type on the distribution of zeros of holomorphic functions
Sbornik. Mathematics, Tome 51 (1985) no. 2, pp. 315-344

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f(\lambda)$ and $g(\lambda)$ be holomorphic functions of finite order in a sector $\Lambda$, and let $n(f,r)$ and $n(g,r)$ be the distribution functions of their zeros inside this sector. Theorems established in this article permit the assertion that $n(f,r)$ and $n(g,r)$ are equivalent if $f(\lambda)$ and $g(\lambda)$ differ “little” on the boundary of $\Lambda$. In the second part of the article domains bounded by curves of parabola type are considered instead of a sector $\Lambda$, and theorems are established which generalize and strengthen Tauberian theorems with a remainder for the distributions of zeros of entire functions and for Stieltjes transforms. Bibliography: 28 titles.
@article{SM_1985_51_2_a1,
     author = {A. A. Shkalikov},
     title = {Theorems of {Tauberian} type on the distribution of zeros of holomorphic functions},
     journal = {Sbornik. Mathematics},
     pages = {315--344},
     publisher = {mathdoc},
     volume = {51},
     number = {2},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_51_2_a1/}
}
TY  - JOUR
AU  - A. A. Shkalikov
TI  - Theorems of Tauberian type on the distribution of zeros of holomorphic functions
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 315
EP  - 344
VL  - 51
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1985_51_2_a1/
LA  - en
ID  - SM_1985_51_2_a1
ER  - 
%0 Journal Article
%A A. A. Shkalikov
%T Theorems of Tauberian type on the distribution of zeros of holomorphic functions
%J Sbornik. Mathematics
%D 1985
%P 315-344
%V 51
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1985_51_2_a1/
%G en
%F SM_1985_51_2_a1
A. A. Shkalikov. Theorems of Tauberian type on the distribution of zeros of holomorphic functions. Sbornik. Mathematics, Tome 51 (1985) no. 2, pp. 315-344. http://geodesic.mathdoc.fr/item/SM_1985_51_2_a1/