Theorems of Tauberian type on the distribution of zeros of holomorphic functions
Sbornik. Mathematics, Tome 51 (1985) no. 2, pp. 315-344 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $f(\lambda)$ and $g(\lambda)$ be holomorphic functions of finite order in a sector $\Lambda$, and let $n(f,r)$ and $n(g,r)$ be the distribution functions of their zeros inside this sector. Theorems established in this article permit the assertion that $n(f,r)$ and $n(g,r)$ are equivalent if $f(\lambda)$ and $g(\lambda)$ differ “little” on the boundary of $\Lambda$. In the second part of the article domains bounded by curves of parabola type are considered instead of a sector $\Lambda$, and theorems are established which generalize and strengthen Tauberian theorems with a remainder for the distributions of zeros of entire functions and for Stieltjes transforms. Bibliography: 28 titles.
@article{SM_1985_51_2_a1,
     author = {A. A. Shkalikov},
     title = {Theorems of {Tauberian} type on the distribution of zeros of holomorphic functions},
     journal = {Sbornik. Mathematics},
     pages = {315--344},
     year = {1985},
     volume = {51},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_51_2_a1/}
}
TY  - JOUR
AU  - A. A. Shkalikov
TI  - Theorems of Tauberian type on the distribution of zeros of holomorphic functions
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 315
EP  - 344
VL  - 51
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1985_51_2_a1/
LA  - en
ID  - SM_1985_51_2_a1
ER  - 
%0 Journal Article
%A A. A. Shkalikov
%T Theorems of Tauberian type on the distribution of zeros of holomorphic functions
%J Sbornik. Mathematics
%D 1985
%P 315-344
%V 51
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1985_51_2_a1/
%G en
%F SM_1985_51_2_a1
A. A. Shkalikov. Theorems of Tauberian type on the distribution of zeros of holomorphic functions. Sbornik. Mathematics, Tome 51 (1985) no. 2, pp. 315-344. http://geodesic.mathdoc.fr/item/SM_1985_51_2_a1/

[1] Shkalikov A. A., “Teoremy tauberova tipa o raspredelenii nulei golomorfnykh funktsii”, DAN SSSR, 267:6 (1982), 1318–1322 | MR | Zbl

[2] Keldysh M. V., “Ob odnoi tauberovoi teoreme”, Trudy MIAN, 38 (1951), 77–86 | Zbl

[3] Subkhankulov M. A., Tauberovy teoremy s ostatkom, Nauka, M., 1976 | MR

[4] Malliavin P., “Un theorem tauberian a vec reste pour la transforme de Stieltjes”, C. r. Acad. sci. Paris, 255 (1962), 2351–2352 | MR | Zbl

[5] Pleijel A., “On theorem by P. Malliavin”, Math. Inst. Lund., 1983, 166–168 | MR

[6] Shkalikov A. A., “Otsenki meromorfnykh funktsii i teoremy summiruemosti”, UMN, 34:4 (1979), 152–153 | MR

[7] Shkalikov A. A., “Ob otsenkakh meromorfnykh funktsii i summirovanii ryadov po kornevym vektoram nesamosopryazhennykh operatorov”, DAN SSSR, 268:6 (1983), 1310–1314 | MR | Zbl

[8] Matsaav V. I., Palat Yu. A., “O raspredelenii spektra polinomialnogo operatornogo puchka”, DAN Arm. SSR, 17:5 (1966), 257–261

[9] Kheiman U. K., Meromorfnye funktsii, Mir, M., 1966 | MR

[10] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956

[11] Radzievskii G. V., “Asimptotika raspredeleniya kharakteristicheskikh chisel operator-funktsii, analiticheskikh v ugle”, Matem. sb., 112(154) (1980), 396–420 | MR | Zbl

[12] Boas R. Ph., Entire functions, New York, 1954

[13] Valiron G., “Sur les fonctions entieres d'ordre fini”, Ann. fac. sci. univ. Toulouse (3), 5 (1913), 117–257 | MR

[14] Titchmarsh E. C., “On integral functions with real negative zeros”, Proc. London Math. Soc., ser. 2, 26 (1927), 185–200 | DOI | MR | Zbl

[15] Hardy G. H., Littlewood J. E., “Tauberian theorem concerning powerseries and Dirichlet's series whose coefficients are positive”, Proc. London Math. Soc., ser. 2, 13 (1913), 174–191 | DOI

[16] Hardy G. H., Littlewood J. E., “Notes on the theory of series (XI): On tauberian theorems”, Proc. London Math. Soc., ser. 2, 30 (1930), 23–37 | DOI

[17] Bowen N. A., “A function-theory proof of tauberian theorems on integral functions”, Quart. J. Math. (Oxford), 19:73 (1948), 90–100 | DOI | MR | Zbl

[18] Noble M. E., “Extentions and applications of Tauberian theorem due to Valiron”, Proc. Cambrige Philos. Soc., 47 (1951), 22–37 | DOI | MR | Zbl

[19] Bowen N. A., Macintyre A. J., “Some theorems on integral functions with negative zeros”, Trans. Amer. Math. Soc., 70:1 (1951), 114–126 | DOI | MR | Zbl

[20] Boas R. P., “Integral functions with negative zeros”, Canad. J. Math. (2), 5 (1953), 179–189 | MR

[21] Edrei A., Fuchs W. H. J., “Tauberian theorems for a class of meromorphic functions with negative zeros and positive poles”, Sovremennye problemy teorii analiticheskikh funktsii, Nauka, M., 1966, 339–358 | MR

[22] Edrei A., “Locally tauberian theorems for meromorphic functions of lower order less then 1”, Trans. Amer. Math. Soc, 140 (1969), 309–332 | DOI | MR | Zbl

[23] Korenblyum B. I., “Obschaya tauberova teorema dlya otnosheniya funktsii”, DAN SSSR, 88:5 (1953), 745–748 | MR

[24] Selander T., “Bilateral tauberian theorems of keldys type”, Arkiv Math., 5:6 (1963), 85–96 | DOI | MR | Zbl

[25] Pleijel A., “A bilateral tauberian theorems”, Arkiv Math., 4 (1962), 561–571 | DOI | MR

[26] Bowen N. A., “Some tauberian theorems for canonical products”, J. London Math. Soc., 39:154 (1964), 231–233 | DOI | MR

[27] Keldysh M. V., “O sobstvennykh znacheniyakh i sobstvennykh funktsiyakh nekotorykh klassov nesamosopryazhennykh uravnenii”, DAN SSSR, 77:1 (1951), 11–14 | Zbl

[28] Markus A. S., Matsaev V. I., “Ob asimptotike spektra operatorov, blizkikh k normalnym”, Funkts. analiz, 13:3 (1979), 93–94 | MR | Zbl