On stabilization of the solution of the third mixed problem for the wave equation in a~cylindrical domain
Sbornik. Mathematics, Tome 51 (1985) no. 2, pp. 287-314

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient conditions are obtained for stabilization as $t\to\infty$ of the solution of the third mixed problem for the wave equation in the exterior of an infinite closed cylindrical surface in space variables, in the presence of an influx of energy into the region through the boundary $\bigl(\frac{\partial u}{\partial n}+g(x)u|_{\partial\Omega}=0$, $g(x)$ of arbitrary sign$\bigr)$. An asymptotic expansion as $t\to\infty$ is established for the solution. Bibliography: 18 titles.
@article{SM_1985_51_2_a0,
     author = {V. M. Favorin},
     title = {On stabilization of the solution of the third mixed problem for the wave equation in a~cylindrical domain},
     journal = {Sbornik. Mathematics},
     pages = {287--314},
     publisher = {mathdoc},
     volume = {51},
     number = {2},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_51_2_a0/}
}
TY  - JOUR
AU  - V. M. Favorin
TI  - On stabilization of the solution of the third mixed problem for the wave equation in a~cylindrical domain
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 287
EP  - 314
VL  - 51
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1985_51_2_a0/
LA  - en
ID  - SM_1985_51_2_a0
ER  - 
%0 Journal Article
%A V. M. Favorin
%T On stabilization of the solution of the third mixed problem for the wave equation in a~cylindrical domain
%J Sbornik. Mathematics
%D 1985
%P 287-314
%V 51
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1985_51_2_a0/
%G en
%F SM_1985_51_2_a0
V. M. Favorin. On stabilization of the solution of the third mixed problem for the wave equation in a~cylindrical domain. Sbornik. Mathematics, Tome 51 (1985) no. 2, pp. 287-314. http://geodesic.mathdoc.fr/item/SM_1985_51_2_a0/