Construction and investigation of solutions of differential equations by methods in the theory of approximation of functions
Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 141-167 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The steady-state equation $Au_0=f$, the parabolic Cauchy problem $u_1'(t)=Au_1(t)$, $u_1(0)=f$, and the hyperbolic problem $u_2''(t)=Au_2(t)$, $u_2(0)=f$, $u_2'(0)=0$, are considered, where $A$ is a matrix-valued positive selfadjoint second-order partial differential operator with analytic coefficients, and $f$ is an analytic function. Methods in the theory of weighted approximation of functions by polynomials on the line are used to construct polynomial representations of solutions of these problems of the form $u_i=\lim_{h\to\infty}P_n^i(A)f$, where the polynomials $P_n^i(\lambda)$, $i=0,1,2$, are constructed in explicit form. Estimates of the rate of convergence are given. With the help of these estimates and Bernstein's inverse theorems in approximation theory, theorems are obtained on the smoothness and analyticity of solutions of degenerate systems whose coefficients are trigonometric polynomials. Bibliography: 9 titles.
@article{SM_1985_51_1_a9,
     author = {A. V. Babin},
     title = {Construction and investigation of solutions of differential equations by methods in the theory of approximation of functions},
     journal = {Sbornik. Mathematics},
     pages = {141--167},
     year = {1985},
     volume = {51},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_51_1_a9/}
}
TY  - JOUR
AU  - A. V. Babin
TI  - Construction and investigation of solutions of differential equations by methods in the theory of approximation of functions
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 141
EP  - 167
VL  - 51
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1985_51_1_a9/
LA  - en
ID  - SM_1985_51_1_a9
ER  - 
%0 Journal Article
%A A. V. Babin
%T Construction and investigation of solutions of differential equations by methods in the theory of approximation of functions
%J Sbornik. Mathematics
%D 1985
%P 141-167
%V 51
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1985_51_1_a9/
%G en
%F SM_1985_51_1_a9
A. V. Babin. Construction and investigation of solutions of differential equations by methods in the theory of approximation of functions. Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 141-167. http://geodesic.mathdoc.fr/item/SM_1985_51_1_a9/

[1] Oleinik O. A., Radkevich E. V., “Uravneniya vtorogo poryadka s neotritsatelnoi kharakteristicheskoi formoi”, Itogi nauki. Matematicheskii analiz, 1969, VINITI, M., 1971, 7–252 | MR

[2] Bernshtein S. N., Ekstremalnye svoistva polinomov, ONTI, M.-L., 1937

[3] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, T. II, Nauka, M., 1969

[4] Gelfond A. O., Ischislenie konechnykh raznostei, Nauka, M., 1967 | MR

[5] Babin A. V., “Vyrazhenie resheniya differentsialnogo uravneniya cherez iteratsii differentsialnykh operatorov”, Matem. sb., 105(147) (1978), 467–484 | MR | Zbl

[6] Adamar Zh., Zadacha Koshi dlya lineinykh uravnenii s chastnymi proizvodnymi giperbolicheskogo tipa, Nauka, M., 1978 | MR

[7] Bony Zh.-M., Shapira P., “Suschestvovanie i prodolzhenie reshenii uravnenii s chastnymi proizvodnymi”, Matematika (sb. perevodov), 17:1 (1973), 162–171 | MR | Zbl

[8] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR

[9] Boni Zh.-M., Shapira P., “Resheniya-giperfunktsii zadachi Koshi”, Matematika (sb. perevodov), 17:2 (1973), 98–107 | MR