On the length of the period of a~quadratic irrationality
Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 119-128

Voir la notice de l'article provenant de la source Math-Net.Ru

The estimate $$ Q(D)\asymp\sqrt DL_{4D}(1),\qquad D\to\infty, $$ is proved, where $Q(D)$ is the number of reduced binary quadratic forms of discriminant $4D$ and $L_{4D}(s)=\sum^\infty_{n=1}\bigl(\frac{4D}n\bigr)n^{-s}$ is a Dirichlet $L$-series. Results concerning individual estimates of $l/\log\varepsilon$ are also obtained, where $l$ is the length of the period of the continued-fraction expansion of $\xi\in\mathbf Q(\sqrt D)$ and $\varepsilon$ is a fundamental unit of the field $\mathbf Q(\sqrt D)$. Bibliography: 12 titles.
@article{SM_1985_51_1_a7,
     author = {E. P. Golubeva},
     title = {On the length of the period of a~quadratic irrationality},
     journal = {Sbornik. Mathematics},
     pages = {119--128},
     publisher = {mathdoc},
     volume = {51},
     number = {1},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_51_1_a7/}
}
TY  - JOUR
AU  - E. P. Golubeva
TI  - On the length of the period of a~quadratic irrationality
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 119
EP  - 128
VL  - 51
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1985_51_1_a7/
LA  - en
ID  - SM_1985_51_1_a7
ER  - 
%0 Journal Article
%A E. P. Golubeva
%T On the length of the period of a~quadratic irrationality
%J Sbornik. Mathematics
%D 1985
%P 119-128
%V 51
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1985_51_1_a7/
%G en
%F SM_1985_51_1_a7
E. P. Golubeva. On the length of the period of a~quadratic irrationality. Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 119-128. http://geodesic.mathdoc.fr/item/SM_1985_51_1_a7/