On the length of the period of a quadratic irrationality
Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 119-128 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The estimate $$ Q(D)\asymp\sqrt DL_{4D}(1),\qquad D\to\infty, $$ is proved, where $Q(D)$ is the number of reduced binary quadratic forms of discriminant $4D$ and $L_{4D}(s)=\sum^\infty_{n=1}\bigl(\frac{4D}n\bigr)n^{-s}$ is a Dirichlet $L$-series. Results concerning individual estimates of $l/\log\varepsilon$ are also obtained, where $l$ is the length of the period of the continued-fraction expansion of $\xi\in\mathbf Q(\sqrt D)$ and $\varepsilon$ is a fundamental unit of the field $\mathbf Q(\sqrt D)$. Bibliography: 12 titles.
@article{SM_1985_51_1_a7,
     author = {E. P. Golubeva},
     title = {On the length of the period of a~quadratic irrationality},
     journal = {Sbornik. Mathematics},
     pages = {119--128},
     year = {1985},
     volume = {51},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_51_1_a7/}
}
TY  - JOUR
AU  - E. P. Golubeva
TI  - On the length of the period of a quadratic irrationality
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 119
EP  - 128
VL  - 51
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1985_51_1_a7/
LA  - en
ID  - SM_1985_51_1_a7
ER  - 
%0 Journal Article
%A E. P. Golubeva
%T On the length of the period of a quadratic irrationality
%J Sbornik. Mathematics
%D 1985
%P 119-128
%V 51
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1985_51_1_a7/
%G en
%F SM_1985_51_1_a7
E. P. Golubeva. On the length of the period of a quadratic irrationality. Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 119-128. http://geodesic.mathdoc.fr/item/SM_1985_51_1_a7/

[1] Pen A. S., Skubenko B. F., “Otsenka sverkhu perioda kvadratichnoi irratsionalnosti”, Matem. zametki, 5:4 (1969), 413–417 | MR

[2] Podsypanin E. V., “O dline perioda kvadratichnoi irratsionalnosti”, Zapiski nauchn. seminarov LOMI., 82 (1979), 95–99 | MR | Zbl

[3] Skubenko B. F., “Asimptoticheskoe raspredelenie tselykh tochek na odnopolostnom giperboloide i ergodicheskie teoremy”, Izv. AN SSSR. Seriya matem., 26:5 (1962), 721–752 | MR | Zbl

[4] Takhtadzhyan L. A., “Asimptoticheskaya formula dlya summ dlin periodov kvadratichnykh irratsionalnostei liskpiminanta $D$”, Zapiski nauchn. seminarov LOMI, 91 (1979), 134–144 | MR | Zbl

[5] Vinogradov A. I., Takhtadzhyan L. A., “Ob asimptotikakh Linnika–Skubenko”, DAN SSSR, 253:4 (1980), 777–780 | MR | Zbl

[6] Golubeva E. P., “Asimptoticheskoe raspredelenie tselochislennykh binarnykh form fiksirovannogo diskoiminanta”, Zapiski nauchn. seminarov LOMI, 112 (1981), 26–40 | MR | Zbl

[7] Burgess D. A., “On character sums and $L$-series”, Proc. London Math. Soc., 12:46 (1962), 193–206 ; Математика. Периодический сборник переводов иностранных статей, 7:4 (1963), 17–30 | DOI | MR | Zbl

[8] Vinogradov A. I., Linnik Yu. V., “Giperellipticheskie krivye i naimenshii prostoi kvadratichnyi vychet”, DAN SSSR, 168:2 (1966), 259–261 ; Линник Ю. В., Избранные труды. Теория чисел. $L$-функции и дисперсионный метод, Наука, Л., 1980 | MR | Zbl | MR

[9] Linnik Ju. V., “Sur une application du théoréme d'André Weil à la théorie des charactérs de Dirichlet”, Séminaire Delange–Pisot–Poitou. Théorie des nombres. 8 année. 1966/1967, No 6., Paris, 1968, 6-01–6-07.; Линник Ю. В., Избранные труды. Теория чисел. $L$-функции и дисперсионный метод, Наука, Л., 1980 | MR

[10] Baker A., Schinzel A., “On the least integers represented by the genera of binary quadratic forms”, Acta arithm., 18 (1971), 137–144 | MR | Zbl

[11] Heath-Brown D. R., “On a paper of Baker and Schinzel”, Acta arithm., 35:2 (1979), 203–207 | MR | Zbl

[12] Venkov B. A., Elementarnaya teoriya chisel, ONTI, M.-L., 1937