On the maximal dimension of irreducible representations of simple Lie $p$-algebras of the Cartan series~$S$ and~$H$
Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 107-118
Voir la notice de l'article provenant de la source Math-Net.Ru
The maximal dimension is computed for irreducible representations of the Hamiltonian Lie $p$-algebra and the special Lie $p$-algebra of an even number of variables over an algebraically closed field of characteristic $p>3$.
Bibliography: 11 titles.
@article{SM_1985_51_1_a6,
author = {Ya. S. Krylyuk},
title = {On the maximal dimension of irreducible representations of simple {Lie} $p$-algebras of the {Cartan} series~$S$ and~$H$},
journal = {Sbornik. Mathematics},
pages = {107--118},
publisher = {mathdoc},
volume = {51},
number = {1},
year = {1985},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1985_51_1_a6/}
}
TY - JOUR AU - Ya. S. Krylyuk TI - On the maximal dimension of irreducible representations of simple Lie $p$-algebras of the Cartan series~$S$ and~$H$ JO - Sbornik. Mathematics PY - 1985 SP - 107 EP - 118 VL - 51 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1985_51_1_a6/ LA - en ID - SM_1985_51_1_a6 ER -
Ya. S. Krylyuk. On the maximal dimension of irreducible representations of simple Lie $p$-algebras of the Cartan series~$S$ and~$H$. Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 107-118. http://geodesic.mathdoc.fr/item/SM_1985_51_1_a6/