Approximation by translates and completeness of weighted systems of exponential functions in~$L^2(\mathbf R)$
Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 91-106
Voir la notice de l'article provenant de la source Math-Net.Ru
Both necessary conditions and sufficient conditions on a sequence $\lambda_n\in\mathbf R$ are found for the family of translates $f(t-\lambda_n)$ of an $L^2$-function whose Fourier transform is almost everywhere nonzero and rapidly decreasing to be dense in $L^2(\mathbf R)$.
Bibliography: 9 titles.
@article{SM_1985_51_1_a5,
author = {A. M. Sedletskii},
title = {Approximation by translates and completeness of weighted systems of exponential functions in~$L^2(\mathbf R)$},
journal = {Sbornik. Mathematics},
pages = {91--106},
publisher = {mathdoc},
volume = {51},
number = {1},
year = {1985},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1985_51_1_a5/}
}
TY - JOUR AU - A. M. Sedletskii TI - Approximation by translates and completeness of weighted systems of exponential functions in~$L^2(\mathbf R)$ JO - Sbornik. Mathematics PY - 1985 SP - 91 EP - 106 VL - 51 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1985_51_1_a5/ LA - en ID - SM_1985_51_1_a5 ER -
A. M. Sedletskii. Approximation by translates and completeness of weighted systems of exponential functions in~$L^2(\mathbf R)$. Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 91-106. http://geodesic.mathdoc.fr/item/SM_1985_51_1_a5/