Approximation by translates and completeness of weighted systems of exponential functions in~$L^2(\mathbf R)$
Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 91-106

Voir la notice de l'article provenant de la source Math-Net.Ru

Both necessary conditions and sufficient conditions on a sequence $\lambda_n\in\mathbf R$ are found for the family of translates $f(t-\lambda_n)$ of an $L^2$-function whose Fourier transform is almost everywhere nonzero and rapidly decreasing to be dense in $L^2(\mathbf R)$. Bibliography: 9 titles.
@article{SM_1985_51_1_a5,
     author = {A. M. Sedletskii},
     title = {Approximation by translates and completeness of weighted systems of exponential functions in~$L^2(\mathbf R)$},
     journal = {Sbornik. Mathematics},
     pages = {91--106},
     publisher = {mathdoc},
     volume = {51},
     number = {1},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_51_1_a5/}
}
TY  - JOUR
AU  - A. M. Sedletskii
TI  - Approximation by translates and completeness of weighted systems of exponential functions in~$L^2(\mathbf R)$
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 91
EP  - 106
VL  - 51
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1985_51_1_a5/
LA  - en
ID  - SM_1985_51_1_a5
ER  - 
%0 Journal Article
%A A. M. Sedletskii
%T Approximation by translates and completeness of weighted systems of exponential functions in~$L^2(\mathbf R)$
%J Sbornik. Mathematics
%D 1985
%P 91-106
%V 51
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1985_51_1_a5/
%G en
%F SM_1985_51_1_a5
A. M. Sedletskii. Approximation by translates and completeness of weighted systems of exponential functions in~$L^2(\mathbf R)$. Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 91-106. http://geodesic.mathdoc.fr/item/SM_1985_51_1_a5/