On monoids of isotone mappings
Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 47-65 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The author introduces a class $\mathfrak D$ of sufficient monoids which are monoids isomorphic to certain special submonoids of monoids of isotone selfmaps of partially ordered sets with a greatest or least element. In contradistinction to the class of monoids isomorphic to monoids of all isotone maps, $\mathfrak D$ is an axiomatizable class. It follows from the isomorphism [elementary equivalence] of sufficient monoids of partially ordered sets $P$ and $P'$ that $P'$ is isomorphic [elementarily equivalent] to either $P$ or $P^{\mathrm{op}}$. Elementarily equivalent partially ordered sets possess elementarily equivalent sufficient monoids. Figures: 2. Bibliography: 19 titles.
@article{SM_1985_51_1_a3,
     author = {L. A. Skornyakov},
     title = {On monoids of isotone mappings},
     journal = {Sbornik. Mathematics},
     pages = {47--65},
     year = {1985},
     volume = {51},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_51_1_a3/}
}
TY  - JOUR
AU  - L. A. Skornyakov
TI  - On monoids of isotone mappings
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 47
EP  - 65
VL  - 51
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1985_51_1_a3/
LA  - en
ID  - SM_1985_51_1_a3
ER  - 
%0 Journal Article
%A L. A. Skornyakov
%T On monoids of isotone mappings
%J Sbornik. Mathematics
%D 1985
%P 47-65
%V 51
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1985_51_1_a3/
%G en
%F SM_1985_51_1_a3
L. A. Skornyakov. On monoids of isotone mappings. Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 47-65. http://geodesic.mathdoc.fr/item/SM_1985_51_1_a3/

[1] Aizenshtat L. Ya., “O nekotorykh polugruppakh endomorfizmov, opredelyayuschikh uporyadochennost v mnozhestve”, Voprosy sovrem, matem. i metodiki ee prepod. v vyssh. shkole, Uch. zap. LGPI, 404, L., 1971, 147–152

[2] Aizenshtat A. Ya, Shvarts T. B., “Ob opredelyaemosti struktur strukturnymi endomorfizmami”, Izv. VUZov. Matematika, 1971, no. 3, 3–11

[3] Vazhenin Yu. M., “Polugruppy inf-endomorfizmov uporyadochennykh mnozhestv”, Matem. zapiski Uralsk. un-ta, 7:1 (1969), 23–34 | Zbl

[4] Vazhenin Yu. M., “Uporyadochennye mnozhestva i ikh inf-endomorfizmy”, Matem. zametki, 7:3 (1970), 339–347

[5] Vazhenin Yu. M., “Elementarnye svoistva polugrupp preobrazovanii uporyadochennykh mnozhestv”, Algebra i logika, 9:3 (1970), 281–301 | Zbl

[6] Gluskin L. M., “Polugruppy izotonnykh preobrazovanii”, UMN, 16:5 (1961), 157–162 | MR | Zbl

[7] Evseev A. E., “Polustrukturnye endomorfizmy uporyadochennogo mnozhestva”, Voprosy sovrem, matem. i metodiki ee prepod, v vyssh. shkole, Uch. zap. LGPI, 404, L., 1971, 186–190 | MR

[8] Ershov Yu. L., Palyutin E. A., Matematicheskaya logika, Nauka, M., 1979 | MR

[9] Zybina L. D., “O sootnosheniyakh, opredelyayuschikh uporyadochennost nekotorykh endomorfizmov uporyadochennogo mnozhestva”, Uch. zap. Leningr. ped. in-ta, 274 (1965), 106–121 | MR | Zbl

[10] Lyapin E. S., “Napravlennye endomorfizmy uporyadochennykh mnozhestv”, Sib. matem. zh., 11:1 (1970), 217–221 | Zbl

[11] Maltsev A. I., Algebraicheskie sistemy, Nauka, M., 1970 | MR | Zbl

[12] Pinus A. G., “Zamechaniya k state: Yu. M. Vazhenin, Elementarnye svoistva polugrupp preobrazovanii uporyadochennykh mnozhestv”, Algebra i logika, 10:3 (1971), 327–328 | MR | Zbl

[13] Shneperman L. B., “Polugruppy endomorfizmov kvaziuporyadochennykh mnozhestv”, Uch. zap. Leningr. ped. in-ta, 238 (1962), 21–37 | Zbl

[14] Bandelt H.-J., “Isomorphisms between semigroups of isotone maps”, J. Austral. Math. Soc. A, 30:4 (1981), 453–460 | DOI | MR | Zbl

[15] Duffus D., Wille R., “A theorem on partially ordered sets of order-preserving mappings”, Proc. Amer. Math. Soc., 76:1 (1979), 14–16 | DOI | MR | Zbl

[16] Schein B. M., “Ordered sets, semilattices, distributive lattices and Boolean algebras with homomorphic endomorphism semigroups”, Fundam. math., 68:1 (1970), 31–50 | MR | Zbl

[17] Schreiner E. A., “Tight residuated mappings”, Proc. Univ. Houston, Lattice Theory Conf., 1973, 519–530 | MR | Zbl

[18] Sichler J., “Nonconstant endomorphisms of lattices”, Proc. Amer. Math. Soc., 34:1 (1972), 67–70 | DOI | MR | Zbl

[19] Thornton M. C., “Semigroups of isotone selfmaps on partially ordered sets”, J. London Math. Soc., 14:3 (1976), 545–553 | DOI | MR | Zbl