The symplectic structure of the orbits of the coadjoint representation of Lie algebras of type $E\underset{\rho}\times G$
Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 275-286
Voir la notice de l'article provenant de la source Math-Net.Ru
The following theorem is proved.
Theorem. Let $G$ be the semidirect sum of a simple Lie algebra $H$ and an Abelian algebra relative to representation $\mu$. Then a complete involutive system of rational functions on $G^*$ is explicitly constructed in the following cases: a) {\it$H=\operatorname{gl}(2n)$ and $\mu=\Lambda^2\rho$;} b) {\it$H=\operatorname{sl}(2n)$ and $\mu=s^2\rho$;} c) {\it$H=\operatorname{sp}(2n)$ and $\mu=\rho+\tau$, where $\rho$ is the minimal representation and $\tau$ is the one-dimensional trivial representation.}
Bibliography: 9 titles.
@article{SM_1985_51_1_a17,
author = {T. A. Pevtsova},
title = {The symplectic structure of the orbits of the coadjoint representation of {Lie} algebras of type $E\underset{\rho}\times G$},
journal = {Sbornik. Mathematics},
pages = {275--286},
publisher = {mathdoc},
volume = {51},
number = {1},
year = {1985},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1985_51_1_a17/}
}
TY - JOUR
AU - T. A. Pevtsova
TI - The symplectic structure of the orbits of the coadjoint representation of Lie algebras of type $E\underset{\rho}\times G$
JO - Sbornik. Mathematics
PY - 1985
SP - 275
EP - 286
VL - 51
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/SM_1985_51_1_a17/
LA - en
ID - SM_1985_51_1_a17
ER -
%0 Journal Article
%A T. A. Pevtsova
%T The symplectic structure of the orbits of the coadjoint representation of Lie algebras of type $E\underset{\rho}\times G$
%J Sbornik. Mathematics
%D 1985
%P 275-286
%V 51
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1985_51_1_a17/
%G en
%F SM_1985_51_1_a17
T. A. Pevtsova. The symplectic structure of the orbits of the coadjoint representation of Lie algebras of type $E\underset{\rho}\times G$. Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 275-286. http://geodesic.mathdoc.fr/item/SM_1985_51_1_a17/