The symplectic structure of the orbits of the coadjoint representation of Lie algebras of type $E\underset{\rho}\times G$
Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 275-286

Voir la notice de l'article provenant de la source Math-Net.Ru

The following theorem is proved. Theorem. Let $G$ be the semidirect sum of a simple Lie algebra $H$ and an Abelian algebra relative to representation $\mu$. Then a complete involutive system of rational functions on $G^*$ is explicitly constructed in the following cases: a) {\it$H=\operatorname{gl}(2n)$ and $\mu=\Lambda^2\rho$;} b) {\it$H=\operatorname{sl}(2n)$ and $\mu=s^2\rho$;} c) {\it$H=\operatorname{sp}(2n)$ and $\mu=\rho+\tau$, where $\rho$ is the minimal representation and $\tau$ is the one-dimensional trivial representation.} Bibliography: 9 titles.
@article{SM_1985_51_1_a17,
     author = {T. A. Pevtsova},
     title = {The symplectic structure of the orbits of the coadjoint representation of {Lie} algebras of type $E\underset{\rho}\times G$},
     journal = {Sbornik. Mathematics},
     pages = {275--286},
     publisher = {mathdoc},
     volume = {51},
     number = {1},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_51_1_a17/}
}
TY  - JOUR
AU  - T. A. Pevtsova
TI  - The symplectic structure of the orbits of the coadjoint representation of Lie algebras of type $E\underset{\rho}\times G$
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 275
EP  - 286
VL  - 51
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1985_51_1_a17/
LA  - en
ID  - SM_1985_51_1_a17
ER  - 
%0 Journal Article
%A T. A. Pevtsova
%T The symplectic structure of the orbits of the coadjoint representation of Lie algebras of type $E\underset{\rho}\times G$
%J Sbornik. Mathematics
%D 1985
%P 275-286
%V 51
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1985_51_1_a17/
%G en
%F SM_1985_51_1_a17
T. A. Pevtsova. The symplectic structure of the orbits of the coadjoint representation of Lie algebras of type $E\underset{\rho}\times G$. Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 275-286. http://geodesic.mathdoc.fr/item/SM_1985_51_1_a17/