Nonrationality of the general Enriques variety
Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 267-273 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that a general Enriques variety is nonrational. Bibliography: 7 titles.
@article{SM_1985_51_1_a16,
     author = {S. Yu. \`Endryushka},
     title = {Nonrationality of the general {Enriques} variety},
     journal = {Sbornik. Mathematics},
     pages = {267--273},
     year = {1985},
     volume = {51},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_51_1_a16/}
}
TY  - JOUR
AU  - S. Yu. Èndryushka
TI  - Nonrationality of the general Enriques variety
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 267
EP  - 273
VL  - 51
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1985_51_1_a16/
LA  - en
ID  - SM_1985_51_1_a16
ER  - 
%0 Journal Article
%A S. Yu. Èndryushka
%T Nonrationality of the general Enriques variety
%J Sbornik. Mathematics
%D 1985
%P 267-273
%V 51
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1985_51_1_a16/
%G en
%F SM_1985_51_1_a16
S. Yu. Èndryushka. Nonrationality of the general Enriques variety. Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 267-273. http://geodesic.mathdoc.fr/item/SM_1985_51_1_a16/

[1] Clemens C. H., Griffits P. A., “The intermediate Jacobian of the cubic threefolds”, Ann. of Math., 92:2 (1972), 281–356 | DOI | MR

[2] Roth L., Algebraic threefolds with special regard to problem of racionality, Springer-Verlag, Berlin–Gotingen–Haidelberg, 1955 | MR

[3] Serre J.-P., “On the fundamental group an unirational variety”, J. London Math. Soc., 34:4 (1959), 681–684 | DOI | MR

[4] Sarkisov V. G., “Biratsionalnye avtomorfizmy trekhmernykh algebraicheskikh mnogoobrazii, predstavimykh v vide rassloeniya konik”, UMN, 34:4 (1979), 207–208 | MR | Zbl

[5] Shokurov V. V., “Mnogoobrazie Prima: teoriya i prilozheniya”, Izv. AN SSSR. Ser. matem., 47:4 (1983), 785–855 | MR | Zbl

[6] Tyrrell J. A., “The Enriques threefold”, T. London Math. Soc., 36 (1961), 897–898 | MR

[7] Endryushka S. Yu., “Srednii Yakobian trekhmernogo rassloeniya na koniki yavlyaetsya mnogoobraziem Prima”, Matem. sb., 122(164) (1983), 276–285 | MR