$k\langle n\rangle$ bordism theories with singularities and $k\langle n\rangle$-orientability of bundles
Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 255-266

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper gives a description of the homotopy types of the spectra $k\langle n\rangle$ which represent bordism theories with singularities, and for which $\pi_*(k\langle n\rangle)=Z_{(p)}[t]$, $\dim t=2p^n-2$. The invariants of the Postnikov tower of the spectrum $k\langle n\rangle$ are higher operations $\widetilde Q_n^{(s)}$ where $\widetilde Q_n^{(0)}\in HZ_{(p)}*(HZ_{(p)})$ and the element $\widetilde Q_n^{(s+1)}$ is constructed from the relation $\widetilde Q_n^{(0)}\widetilde Q_n^{(s)}=0$. The order of the higher operation, i.e. the order of the corresponding element $\alpha_s$ in the cohomology of the stage $k^{s-1}\langle n\rangle$, is equal to $p^s$. Moreover, the question of the action of the higher operations $\widetilde Q_n^{(s)}$ on Thom classes of vector bundles and sphere bundles is solved, which gives a necessary and sufficient condition for orientability of vector bundles and sphere bundles in $k\langle n\rangle$-theory. Bibliography: 10 titles.
@article{SM_1985_51_1_a15,
     author = {A. V. Khokhlov},
     title = {$k\langle n\rangle$ bordism theories with singularities and $k\langle n\rangle$-orientability of bundles},
     journal = {Sbornik. Mathematics},
     pages = {255--266},
     publisher = {mathdoc},
     volume = {51},
     number = {1},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_51_1_a15/}
}
TY  - JOUR
AU  - A. V. Khokhlov
TI  - $k\langle n\rangle$ bordism theories with singularities and $k\langle n\rangle$-orientability of bundles
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 255
EP  - 266
VL  - 51
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1985_51_1_a15/
LA  - en
ID  - SM_1985_51_1_a15
ER  - 
%0 Journal Article
%A A. V. Khokhlov
%T $k\langle n\rangle$ bordism theories with singularities and $k\langle n\rangle$-orientability of bundles
%J Sbornik. Mathematics
%D 1985
%P 255-266
%V 51
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1985_51_1_a15/
%G en
%F SM_1985_51_1_a15
A. V. Khokhlov. $k\langle n\rangle$ bordism theories with singularities and $k\langle n\rangle$-orientability of bundles. Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 255-266. http://geodesic.mathdoc.fr/item/SM_1985_51_1_a15/