$k\langle n\rangle$ bordism theories with singularities and $k\langle n\rangle$-orientability of bundles
Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 255-266
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper gives a description of the homotopy types of the spectra $k\langle n\rangle$ which represent bordism theories with singularities, and for which $\pi_*(k\langle n\rangle)=Z_{(p)}[t]$, $\dim t=2p^n-2$. The invariants of the Postnikov tower of the spectrum $k\langle n\rangle$ are higher operations $\widetilde Q_n^{(s)}$ where $\widetilde Q_n^{(0)}\in HZ_{(p)}*(HZ_{(p)})$ and the element $\widetilde Q_n^{(s+1)}$ is constructed from the relation $\widetilde Q_n^{(0)}\widetilde Q_n^{(s)}=0$. The order of the higher operation, i.e. the order of the corresponding element $\alpha_s$ in the cohomology of the stage $k^{s-1}\langle n\rangle$, is equal to $p^s$. Moreover, the question of the action of the higher operations $\widetilde Q_n^{(s)}$ on Thom classes of vector bundles and sphere bundles is solved, which gives a necessary and sufficient condition for orientability of vector bundles and sphere bundles in $k\langle n\rangle$-theory.
Bibliography: 10 titles.
@article{SM_1985_51_1_a15,
author = {A. V. Khokhlov},
title = {$k\langle n\rangle$ bordism theories with singularities and $k\langle n\rangle$-orientability of bundles},
journal = {Sbornik. Mathematics},
pages = {255--266},
publisher = {mathdoc},
volume = {51},
number = {1},
year = {1985},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1985_51_1_a15/}
}
TY - JOUR AU - A. V. Khokhlov TI - $k\langle n\rangle$ bordism theories with singularities and $k\langle n\rangle$-orientability of bundles JO - Sbornik. Mathematics PY - 1985 SP - 255 EP - 266 VL - 51 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1985_51_1_a15/ LA - en ID - SM_1985_51_1_a15 ER -
A. V. Khokhlov. $k\langle n\rangle$ bordism theories with singularities and $k\langle n\rangle$-orientability of bundles. Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 255-266. http://geodesic.mathdoc.fr/item/SM_1985_51_1_a15/