$k\langle n\rangle$ bordism theories with singularities and $k\langle n\rangle$-orientability of bundles
Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 255-266 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper gives a description of the homotopy types of the spectra $k\langle n\rangle$ which represent bordism theories with singularities, and for which $\pi_*(k\langle n\rangle)=Z_{(p)}[t]$, $\dim t=2p^n-2$. The invariants of the Postnikov tower of the spectrum $k\langle n\rangle$ are higher operations $\widetilde Q_n^{(s)}$ where $\widetilde Q_n^{(0)}\in HZ_{(p)}*(HZ_{(p)})$ and the element $\widetilde Q_n^{(s+1)}$ is constructed from the relation $\widetilde Q_n^{(0)}\widetilde Q_n^{(s)}=0$. The order of the higher operation, i.e. the order of the corresponding element $\alpha_s$ in the cohomology of the stage $k^{s-1}\langle n\rangle$, is equal to $p^s$. Moreover, the question of the action of the higher operations $\widetilde Q_n^{(s)}$ on Thom classes of vector bundles and sphere bundles is solved, which gives a necessary and sufficient condition for orientability of vector bundles and sphere bundles in $k\langle n\rangle$-theory. Bibliography: 10 titles.
@article{SM_1985_51_1_a15,
     author = {A. V. Khokhlov},
     title = {$k\langle n\rangle$ bordism theories with singularities and $k\langle n\rangle$-orientability of bundles},
     journal = {Sbornik. Mathematics},
     pages = {255--266},
     year = {1985},
     volume = {51},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_51_1_a15/}
}
TY  - JOUR
AU  - A. V. Khokhlov
TI  - $k\langle n\rangle$ bordism theories with singularities and $k\langle n\rangle$-orientability of bundles
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 255
EP  - 266
VL  - 51
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1985_51_1_a15/
LA  - en
ID  - SM_1985_51_1_a15
ER  - 
%0 Journal Article
%A A. V. Khokhlov
%T $k\langle n\rangle$ bordism theories with singularities and $k\langle n\rangle$-orientability of bundles
%J Sbornik. Mathematics
%D 1985
%P 255-266
%V 51
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1985_51_1_a15/
%G en
%F SM_1985_51_1_a15
A. V. Khokhlov. $k\langle n\rangle$ bordism theories with singularities and $k\langle n\rangle$-orientability of bundles. Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 255-266. http://geodesic.mathdoc.fr/item/SM_1985_51_1_a15/

[1] Mosher R., Tangora M., Kogomologicheskie operatsii i ikh primenenie v teorii gomotopii, Mir, M., 1970 | Zbl

[2] Pazhitnov A. V., Rudyak Yu. B., O gomotopicheskom tipe vysshikh $k$-teorii Moravy, Preprint in-ta matem. SO AN SSSR, Novosibirsk, 1981

[3] Adams J. F., Priddy S. B., “Uniqueness of BSO”, Math. Proc. Cambr. Phil. Soc., 80 (1976), 475–509 | DOI | MR | Zbl

[4] May J. P., “$E_{\infty}$ ring spaces and $E_{\infty}$ ring spectra”, Lect. Notes Math., 1977 | MR

[5] May J. P., “The homology of $E_{\infty}$ ring spaces”, Lect. Notes. Math., 533 (1976), 69–206 | DOI | MR

[6] Kartan L., “Algebry kogomologii prostranstv Eilenberga–Makleina”, Matematika (sb. perevodov), 3:5 (1959), 3–50

[7] Baas N. A., Madsen I., “On the realization of certain modules over Steenrod algebra”, Math. Scand., 31:1 (1972), 220–224 | MR | Zbl

[8] Bukhshtaber V. M., “Moduli differentsialov spektralnoi posledovatelnosti Atya-Khirtsebrukha”, Matem. sb., 78(120) (1969), 307–320 | Zbl

[9] Cohen F. R., May J. P., Taylor L. R., “$K(Z)$ and $K(Z/2)$ as Thom spectra”, III. J. Math., 25:1 (1981), 99–106 | MR | Zbl

[10] Hegenbarth F., “Secondary cohomology operations applied to the Thom class”, Lect. Notes Math., 778 (1980), 435–442 | MR