On the vanishing of the symbol of a~convolution integral operator
Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 239-253

Voir la notice de l'article provenant de la source Math-Net.Ru

The class $\operatorname{Int}(p,p)$ of kernels of convolution integral operators is defined, and a criterion for a measurable function to belong to $\operatorname{Int}(p,p)$ is given. The question of the behavior of the Fourier transform of a kernel (the symbol) in $\operatorname{Int}(2,2)$ is considered, and it is shown that in the sense of order the symbol can vanish at infinity in an arbitrarily slow manner, and more slowly than any power in the mean. Bibliography: 6 titles.
@article{SM_1985_51_1_a14,
     author = {V. D. Stepanov},
     title = {On the vanishing of the symbol of a~convolution integral operator},
     journal = {Sbornik. Mathematics},
     pages = {239--253},
     publisher = {mathdoc},
     volume = {51},
     number = {1},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_51_1_a14/}
}
TY  - JOUR
AU  - V. D. Stepanov
TI  - On the vanishing of the symbol of a~convolution integral operator
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 239
EP  - 253
VL  - 51
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1985_51_1_a14/
LA  - en
ID  - SM_1985_51_1_a14
ER  - 
%0 Journal Article
%A V. D. Stepanov
%T On the vanishing of the symbol of a~convolution integral operator
%J Sbornik. Mathematics
%D 1985
%P 239-253
%V 51
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1985_51_1_a14/
%G en
%F SM_1985_51_1_a14
V. D. Stepanov. On the vanishing of the symbol of a~convolution integral operator. Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 239-253. http://geodesic.mathdoc.fr/item/SM_1985_51_1_a14/