Local residues in $\mathbf C^n$. Algebraic applications
Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 225-237
Voir la notice de l'article provenant de la source Math-Net.Ru
Connected with a ingular point $a$ of an algebraic set $V=\{z\in\mathbf C^n:g(z)=0\}$ is the local residue
\begin{equation}
\operatorname{res}\limits_{\Gamma_a}(f/g)=\int_{\Gamma_a}\frac{f(z)}{g(z)}\,dz,
\end{equation}
of the rational function $f/g$, where $\Gamma_a$ is a cycle which has a representative in the $n$-dimensional homology group $H_n(\mathbf C^n\setminus V)$ in every neighborhood of the point $a$. The structure of the local residues of the form (1) is described in the case of an isolated singular point $a$: they are expressed in terms of finitely many derivatives of $f$ at $a$. As an application of local residues a theorem of Noether and Bertini is generalized to any number of variables.
Bibliography: 17 titles.
@article{SM_1985_51_1_a13,
author = {A. K. Tsikh},
title = {Local residues in $\mathbf C^n$. {Algebraic} applications},
journal = {Sbornik. Mathematics},
pages = {225--237},
publisher = {mathdoc},
volume = {51},
number = {1},
year = {1985},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1985_51_1_a13/}
}
A. K. Tsikh. Local residues in $\mathbf C^n$. Algebraic applications. Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 225-237. http://geodesic.mathdoc.fr/item/SM_1985_51_1_a13/