Local residues in $\mathbf C^n$. Algebraic applications
Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 225-237

Voir la notice de l'article provenant de la source Math-Net.Ru

Connected with a ingular point $a$ of an algebraic set $V=\{z\in\mathbf C^n:g(z)=0\}$ is the local residue \begin{equation} \operatorname{res}\limits_{\Gamma_a}(f/g)=\int_{\Gamma_a}\frac{f(z)}{g(z)}\,dz, \end{equation} of the rational function $f/g$, where $\Gamma_a$ is a cycle which has a representative in the $n$-dimensional homology group $H_n(\mathbf C^n\setminus V)$ in every neighborhood of the point $a$. The structure of the local residues of the form (1) is described in the case of an isolated singular point $a$: they are expressed in terms of finitely many derivatives of $f$ at $a$. As an application of local residues a theorem of Noether and Bertini is generalized to any number of variables. Bibliography: 17 titles.
@article{SM_1985_51_1_a13,
     author = {A. K. Tsikh},
     title = {Local residues in $\mathbf C^n$. {Algebraic} applications},
     journal = {Sbornik. Mathematics},
     pages = {225--237},
     publisher = {mathdoc},
     volume = {51},
     number = {1},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_51_1_a13/}
}
TY  - JOUR
AU  - A. K. Tsikh
TI  - Local residues in $\mathbf C^n$. Algebraic applications
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 225
EP  - 237
VL  - 51
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1985_51_1_a13/
LA  - en
ID  - SM_1985_51_1_a13
ER  - 
%0 Journal Article
%A A. K. Tsikh
%T Local residues in $\mathbf C^n$. Algebraic applications
%J Sbornik. Mathematics
%D 1985
%P 225-237
%V 51
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1985_51_1_a13/
%G en
%F SM_1985_51_1_a13
A. K. Tsikh. Local residues in $\mathbf C^n$. Algebraic applications. Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 225-237. http://geodesic.mathdoc.fr/item/SM_1985_51_1_a13/