Irreducible representations of strongly solvable Lie~algebras over a~field of positive characteristic
Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 207-223

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that for any modular Lie algebra there exists a unique (to within an isomorphism) $p$-hull of minimal dimension. It is shown that the classes of strongly solvable and completely solvable Lie algebras coincide. It is proved that an irreducible representation of a strongly solvable Lie algebra is monomial, and a formula for the dimension of the representation in terms of the derivation algebra and its stationary subalgebra is obtained. The irreducible representations of the maximal (solvable and nilpotent) subalgebras of a Zassenhaus algebra with basic weights are described. Bibliography: 17 titles.
@article{SM_1985_51_1_a12,
     author = {A. S. Dzhumadil'daev},
     title = {Irreducible representations of strongly solvable {Lie~algebras} over a~field of positive characteristic},
     journal = {Sbornik. Mathematics},
     pages = {207--223},
     publisher = {mathdoc},
     volume = {51},
     number = {1},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_51_1_a12/}
}
TY  - JOUR
AU  - A. S. Dzhumadil'daev
TI  - Irreducible representations of strongly solvable Lie~algebras over a~field of positive characteristic
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 207
EP  - 223
VL  - 51
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1985_51_1_a12/
LA  - en
ID  - SM_1985_51_1_a12
ER  - 
%0 Journal Article
%A A. S. Dzhumadil'daev
%T Irreducible representations of strongly solvable Lie~algebras over a~field of positive characteristic
%J Sbornik. Mathematics
%D 1985
%P 207-223
%V 51
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1985_51_1_a12/
%G en
%F SM_1985_51_1_a12
A. S. Dzhumadil'daev. Irreducible representations of strongly solvable Lie~algebras over a~field of positive characteristic. Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 207-223. http://geodesic.mathdoc.fr/item/SM_1985_51_1_a12/