A~complete asymptotic expansion of the spectral function of second order elliptic operators in~$\mathbf R^n$
Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 191-206

Voir la notice de l'article provenant de la source Math-Net.Ru

A complete asymptotic expansion as $\lambda\to\infty$, $|x|,|y|\leqslant b\infty$ ($b$ arbitrary) is obtained for the spectral function $e_\lambda(x,y)$ of second order elliptic operators in $\mathbf R^n$ satisfying the condition of not being “trapped”, i.e. the requirement that the bicharacteristics issuing from any point extend to infinity. Bibliography: 17 titles.
@article{SM_1985_51_1_a11,
     author = {B. R. Vainberg},
     title = {A~complete asymptotic expansion of the spectral function of second order elliptic operators in~$\mathbf R^n$},
     journal = {Sbornik. Mathematics},
     pages = {191--206},
     publisher = {mathdoc},
     volume = {51},
     number = {1},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_51_1_a11/}
}
TY  - JOUR
AU  - B. R. Vainberg
TI  - A~complete asymptotic expansion of the spectral function of second order elliptic operators in~$\mathbf R^n$
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 191
EP  - 206
VL  - 51
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1985_51_1_a11/
LA  - en
ID  - SM_1985_51_1_a11
ER  - 
%0 Journal Article
%A B. R. Vainberg
%T A~complete asymptotic expansion of the spectral function of second order elliptic operators in~$\mathbf R^n$
%J Sbornik. Mathematics
%D 1985
%P 191-206
%V 51
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1985_51_1_a11/
%G en
%F SM_1985_51_1_a11
B. R. Vainberg. A~complete asymptotic expansion of the spectral function of second order elliptic operators in~$\mathbf R^n$. Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 191-206. http://geodesic.mathdoc.fr/item/SM_1985_51_1_a11/