A complete asymptotic expansion of the spectral function of second order elliptic operators in $\mathbf R^n$
Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 191-206 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A complete asymptotic expansion as $\lambda\to\infty$, $|x|,|y|\leqslant b<\infty$ ($b$ arbitrary) is obtained for the spectral function $e_\lambda(x,y)$ of second order elliptic operators in $\mathbf R^n$ satisfying the condition of not being “trapped”, i.e. the requirement that the bicharacteristics issuing from any point extend to infinity. Bibliography: 17 titles.
@article{SM_1985_51_1_a11,
     author = {B. R. Vainberg},
     title = {A~complete asymptotic expansion of the spectral function of second order elliptic operators in~$\mathbf R^n$},
     journal = {Sbornik. Mathematics},
     pages = {191--206},
     year = {1985},
     volume = {51},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_51_1_a11/}
}
TY  - JOUR
AU  - B. R. Vainberg
TI  - A complete asymptotic expansion of the spectral function of second order elliptic operators in $\mathbf R^n$
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 191
EP  - 206
VL  - 51
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1985_51_1_a11/
LA  - en
ID  - SM_1985_51_1_a11
ER  - 
%0 Journal Article
%A B. R. Vainberg
%T A complete asymptotic expansion of the spectral function of second order elliptic operators in $\mathbf R^n$
%J Sbornik. Mathematics
%D 1985
%P 191-206
%V 51
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1985_51_1_a11/
%G en
%F SM_1985_51_1_a11
B. R. Vainberg. A complete asymptotic expansion of the spectral function of second order elliptic operators in $\mathbf R^n$. Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 191-206. http://geodesic.mathdoc.fr/item/SM_1985_51_1_a11/

[1] Vainberg B. R., “Polnoe asimptoticheskoe razlozhenie spektralnoi funktsii ellipticheskikh operatorov v $R^n$”, Vestn. MGU. Seriya matem., mekh., 1983, no. 4, 29–36 | MR | Zbl

[2] Maslov V. P., Fedoryuk M. V., Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR

[3] Vainberg B. R., Asimptoticheskie metody v uravneniyakh matematicheskoi fiziki, izd-vo MGU, M., 1982 | MR | Zbl

[4] Vainberg B. R., “O korotkovolnovoi asimptotike reshenii statsionarnykh zadach i asimptotike pri $t\to\infty$ reshenii nestatsionarnykh zadach”, UMN, 30:2 (1975), 1–55 | MR

[5] Arsenev A. A., “Asimptotika spektralnoi funktsii uravneniya Shredingera”, ZhVM i MF, 7:6 (1967), 1298–1319 | MR | Zbl

[6] Babich V. M., “O korotkovolnovoi asimptotike resheniya zadachi o tochechnom istochnike v neodnorodnoi srede”, ZhVM i MF, 5:5 (1965), 949–951 | Zbl

[7] Babich V. M., Rapoport Yu. O., “Asimptotika pri malykh vremenakh fundamentalnogo resheniya dlya parabolicheskikh uravnenii vtorogo poryadka”, Problema matematicheskoi fiziki, vyp. 7, izd-vo LGU, 1974, 21–28

[8] Babich V. M., “Metod Adamara i asimptotika spektralnoi funktsii differentsialnogo operatora vtorogo poryadka”, Matem. zametki, 28:5 (1980), 689–694 | MR | Zbl

[9] Buslaev V. S., “Rasseyannye ploskie volny, spektralnye asimptotiki i formuly sleda vo vneshnikh zadachakh”, DAN SSSR, 197:5 (1971), 999–1002 | MR | Zbl

[10] Buslaev V. S., “Ob asimptoticheskom povedenii spektralnykh kharakteristik vneshnikh zadach dlya operatora Shredingera”, Izv. AN SSSR. Seriya matem., 39 (1975), 149–235 | MR | Zbl

[11] Ivrii V. I., Shubin M. A., “Ob asimptotike funktsii spektralnogo sdviga”, DAN SSSR, 263:2 (1982), 283–284 | MR | Zbl

[12] Kucherenko V. V., “Kvaziklassicheskaya asimptotika funktsii tochechnogo istochnika dlya statsionarnogo uravneniya Shredingera”, TMF, 1:3 (1969), 384–406 | MR

[13] Kucherenko V. V., “Nekotorye svoistva korotkovolnovoi asimptotiki fundamentalnogo resheniya uravneniya $\bigl[\Delta+k^2n^2(x)\bigr]u=0$”, Trudy MIEM, 1972, vyp. 25, 32–55

[14] Majda A., Ralston J., “An analogue of Weyl's formula for unbounded domains. I, II, III”, Duke Math. J., 45 (1978), 183–196 ; 513–536 ; 46 (1979), 725–731 | DOI | MR | Zbl | MR | Zbl | DOI | MR | Zbl

[15] Petkov B. M., Popov G. S., “Asymptotic behaviour of the scattering phase for non trapping abstacles”, Ann. Inst. Fourier, 32:3 (1982), 111–150 | MR

[16] Popov G. S., Shubin M. A., “Asimptoticheskoe razlozhenie spektralnoi funktsii dlya ellipticheskikh operatorov vtorogo poryadka v $\mathbf{R}^n$”, Funkts. analiz, 17:3 (1983), 37–45 | MR | Zbl

[17] Khërmander L., “Spektralnaya funktsiya ellipticheskogo operatora”, Matematika (sb. perevodov), 13:6 (1969), 114–137