A~complete asymptotic expansion of the spectral function of second order elliptic operators in~$\mathbf R^n$
Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 191-206
Voir la notice de l'article provenant de la source Math-Net.Ru
A complete asymptotic expansion as $\lambda\to\infty$, $|x|,|y|\leqslant b\infty$ ($b$ arbitrary) is obtained for the spectral function $e_\lambda(x,y)$ of second order elliptic operators in $\mathbf R^n$ satisfying the condition of not being “trapped”, i.e. the requirement that the bicharacteristics issuing from any point extend to infinity.
Bibliography: 17 titles.
@article{SM_1985_51_1_a11,
author = {B. R. Vainberg},
title = {A~complete asymptotic expansion of the spectral function of second order elliptic operators in~$\mathbf R^n$},
journal = {Sbornik. Mathematics},
pages = {191--206},
publisher = {mathdoc},
volume = {51},
number = {1},
year = {1985},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1985_51_1_a11/}
}
TY - JOUR AU - B. R. Vainberg TI - A~complete asymptotic expansion of the spectral function of second order elliptic operators in~$\mathbf R^n$ JO - Sbornik. Mathematics PY - 1985 SP - 191 EP - 206 VL - 51 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1985_51_1_a11/ LA - en ID - SM_1985_51_1_a11 ER -
B. R. Vainberg. A~complete asymptotic expansion of the spectral function of second order elliptic operators in~$\mathbf R^n$. Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 191-206. http://geodesic.mathdoc.fr/item/SM_1985_51_1_a11/