Euler expansions of theta transforms of Siegel modular forms of half-integral weight and their analytic properties
Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 169-190
Voir la notice de l'article provenant de la source Math-Net.Ru
Using the method of A. N. Andrianov, we establish a connection between the Fourier coefficients of Siegel modular forms $F$ of half-integral weight and the eigenvalues of operators in the local Hecke rings $\mathbf L_p^n(\varkappa)$ for the symplectic covering group $\mathrm{GSp}_n^+(\mathbf R)$ of degree $n$. These results are used for analytic continuation of the standard zeta-functions associated to $F$.
Bibliography: 10 titles.
@article{SM_1985_51_1_a10,
author = {V. G. Zhuravlev},
title = {Euler expansions of theta transforms of {Siegel} modular forms of half-integral weight and their analytic properties},
journal = {Sbornik. Mathematics},
pages = {169--190},
publisher = {mathdoc},
volume = {51},
number = {1},
year = {1985},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1985_51_1_a10/}
}
TY - JOUR AU - V. G. Zhuravlev TI - Euler expansions of theta transforms of Siegel modular forms of half-integral weight and their analytic properties JO - Sbornik. Mathematics PY - 1985 SP - 169 EP - 190 VL - 51 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1985_51_1_a10/ LA - en ID - SM_1985_51_1_a10 ER -
V. G. Zhuravlev. Euler expansions of theta transforms of Siegel modular forms of half-integral weight and their analytic properties. Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 169-190. http://geodesic.mathdoc.fr/item/SM_1985_51_1_a10/