Estimates for the characteristic function of a~prime ideal
Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 9-32

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $k$ be a field of characteristic 0, $\mathfrak p$ a homogeneous prime ideal of the ring $k[X]=k[x_0,\dots,x_m]$ $(m\geqslant1)$ and $\mathfrak L_\mathfrak p(\nu)$ the set of residues of homogeneous polynomials of degree $\nu$ ($\nu$ is a natural number) in $k[X]$, taken modulo $\mathfrak p$. In this paper an inequality is proved for the dimension of the vector space $\mathfrak L_\mathfrak p(\nu)$ which is valid for $\nu\geqslant1$. Bibliography: 6 titles.
@article{SM_1985_51_1_a1,
     author = {Yu. V. Nesterenko},
     title = {Estimates for the characteristic function of a~prime ideal},
     journal = {Sbornik. Mathematics},
     pages = {9--32},
     publisher = {mathdoc},
     volume = {51},
     number = {1},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_51_1_a1/}
}
TY  - JOUR
AU  - Yu. V. Nesterenko
TI  - Estimates for the characteristic function of a~prime ideal
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 9
EP  - 32
VL  - 51
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1985_51_1_a1/
LA  - en
ID  - SM_1985_51_1_a1
ER  - 
%0 Journal Article
%A Yu. V. Nesterenko
%T Estimates for the characteristic function of a~prime ideal
%J Sbornik. Mathematics
%D 1985
%P 9-32
%V 51
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1985_51_1_a1/
%G en
%F SM_1985_51_1_a1
Yu. V. Nesterenko. Estimates for the characteristic function of a~prime ideal. Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 9-32. http://geodesic.mathdoc.fr/item/SM_1985_51_1_a1/