Estimates for the characteristic function of a prime ideal
Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 9-32
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $k$ be a field of characteristic 0, $\mathfrak p$ a homogeneous prime ideal of the ring $k[X]=k[x_0,\dots,x_m]$ $(m\geqslant1)$ and $\mathfrak L_\mathfrak p(\nu)$ the set of residues of homogeneous polynomials of degree $\nu$ ($\nu$ is a natural number) in $k[X]$, taken modulo $\mathfrak p$. In this paper an inequality is proved for the dimension of the vector space $\mathfrak L_\mathfrak p(\nu)$ which is valid for $\nu\geqslant1$. Bibliography: 6 titles.
@article{SM_1985_51_1_a1,
author = {Yu. V. Nesterenko},
title = {Estimates for the characteristic function of a~prime ideal},
journal = {Sbornik. Mathematics},
pages = {9--32},
year = {1985},
volume = {51},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1985_51_1_a1/}
}
Yu. V. Nesterenko. Estimates for the characteristic function of a prime ideal. Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 9-32. http://geodesic.mathdoc.fr/item/SM_1985_51_1_a1/
[1] Hilbert D., “Über die Theorie der algebraischen Formen”, Math. Ann., 36 (1890), 473–534 | DOI | MR
[2] Burbaki N., Kommutativnaya algebra, Mir, M., 1971 | MR
[3] Gelfond A. O., Transtsendentnye i algebraicheskie chisla, Gostekhizdat, M., 1952
[4] Zarisskii O., Samyuel P., Kommutativnaya algebra, t. II, IL, M., 1963
[5] Nesterenko Yu. V., “Otsenki poryadkov nulei funktsii odnogo klassa i ikh prilozhenie v teorii transtsendentnykh chisel”, Izv. AN SSSR. Seriya matem., 41 (1977), 253–284 | MR | Zbl
[6] Trost E., Prostye chisla, M., 1959 | Zbl