Estimates for the characteristic function of a~prime ideal
Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 9-32
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $k$ be a field of characteristic 0, $\mathfrak p$ a homogeneous prime ideal of the ring $k[X]=k[x_0,\dots,x_m]$ $(m\geqslant1)$ and $\mathfrak L_\mathfrak p(\nu)$ the set of residues of homogeneous polynomials of degree $\nu$ ($\nu$ is a natural number) in $k[X]$, taken modulo $\mathfrak p$. In this paper an inequality is proved for the dimension of the vector space $\mathfrak L_\mathfrak p(\nu)$ which is valid for $\nu\geqslant1$.
Bibliography: 6 titles.
@article{SM_1985_51_1_a1,
author = {Yu. V. Nesterenko},
title = {Estimates for the characteristic function of a~prime ideal},
journal = {Sbornik. Mathematics},
pages = {9--32},
publisher = {mathdoc},
volume = {51},
number = {1},
year = {1985},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1985_51_1_a1/}
}
Yu. V. Nesterenko. Estimates for the characteristic function of a~prime ideal. Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 9-32. http://geodesic.mathdoc.fr/item/SM_1985_51_1_a1/