The domain of convergence of series of generalized exponentials
Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 1-8

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f(z)$ be an entire function of exponential type and of completely regular growth, let $\gamma(t)$ be the Borel transform of $f(z)$, let $\overline D$ be the smallest closed convex set containing all the singular points of $\gamma(t)$, with $\overline D\ne\{0\}$, and let $\{\lambda_n\}$ be a sequence of complex numbers such that $$ \lim_{n\to\infty}\frac{\ln n}{\lambda_n}=0. $$ We ask for the domain of convergence of the series \begin{equation} \sum_{n=1}^\infty A_nf(\lambda_nz). \end{equation} Let $G$ be the open set in which (1) converges uniformly. It is proved that 1) if $0\not\in\partial\overline D$ then $G$ is convex, and 2) if $0\in\overline D$ and $0\in G$, then $G$ is also convex. Generally speaking, $G$ cannot be an arbitrary convex set. It is shown that $G$ can be an arbitrary convex set with $0\in\overline G$, if and only if the singular points of $\gamma(t)$ all lie on a line segment with one end at the origin. Bibliography: 2 titles.
@article{SM_1985_51_1_a0,
     author = {A. F. Leont'ev},
     title = {The domain of convergence of series of generalized exponentials},
     journal = {Sbornik. Mathematics},
     pages = {1--8},
     publisher = {mathdoc},
     volume = {51},
     number = {1},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_51_1_a0/}
}
TY  - JOUR
AU  - A. F. Leont'ev
TI  - The domain of convergence of series of generalized exponentials
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 1
EP  - 8
VL  - 51
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1985_51_1_a0/
LA  - en
ID  - SM_1985_51_1_a0
ER  - 
%0 Journal Article
%A A. F. Leont'ev
%T The domain of convergence of series of generalized exponentials
%J Sbornik. Mathematics
%D 1985
%P 1-8
%V 51
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1985_51_1_a0/
%G en
%F SM_1985_51_1_a0
A. F. Leont'ev. The domain of convergence of series of generalized exponentials. Sbornik. Mathematics, Tome 51 (1985) no. 1, pp. 1-8. http://geodesic.mathdoc.fr/item/SM_1985_51_1_a0/