Dense subclasses in some varieties of two-step nilpotent groups
Sbornik. Mathematics, Tome 50 (1985) no. 2, pp. 369-385
Voir la notice de l'article provenant de la source Math-Net.Ru
Group varieties $\mathfrak W=\mathfrak W(p,k)$ defined by the identities
$$
x^{p^{2k}}=1,\qquad[x,y]^{p^k}=1,\qquad[x,y,z]=1
$$
($p$ is a prime) are examined. For $\mathfrak W'\subseteq\mathfrak W$ the set of all pairwise nonisomorphic $n$-generated groups in $\mathfrak W'$ is denoted by $\mathfrak W_n'$, and the subclass $\mathfrak W'$ is called dense in $\mathfrak W$ if $|\mathfrak W_n'|/|\mathfrak W_n|\to1$ as $n\to\infty$. A general method of investigating the numerical sequence $\{|\mathfrak W_n'|/|\mathfrak W_n\vert\}$ is presented. In particular, it is proved that the subclass of groups with an abelian automorphism group is dense in the variety $\mathfrak W(p,k)$.
Bibliography: 14 titles.
@article{SM_1985_50_2_a4,
author = {P. M. Beletskii},
title = {Dense subclasses in some varieties of two-step nilpotent groups},
journal = {Sbornik. Mathematics},
pages = {369--385},
publisher = {mathdoc},
volume = {50},
number = {2},
year = {1985},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1985_50_2_a4/}
}
P. M. Beletskii. Dense subclasses in some varieties of two-step nilpotent groups. Sbornik. Mathematics, Tome 50 (1985) no. 2, pp. 369-385. http://geodesic.mathdoc.fr/item/SM_1985_50_2_a4/