Dense subclasses in some varieties of two-step nilpotent groups
Sbornik. Mathematics, Tome 50 (1985) no. 2, pp. 369-385 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Group varieties $\mathfrak W=\mathfrak W(p,k)$ defined by the identities $$ x^{p^{2k}}=1,\qquad[x,y]^{p^k}=1,\qquad[x,y,z]=1 $$ ($p$ is a prime) are examined. For $\mathfrak W'\subseteq\mathfrak W$ the set of all pairwise nonisomorphic $n$-generated groups in $\mathfrak W'$ is denoted by $\mathfrak W_n'$, and the subclass $\mathfrak W'$ is called dense in $\mathfrak W$ if $|\mathfrak W_n'|/|\mathfrak W_n|\to1$ as $n\to\infty$. A general method of investigating the numerical sequence $\{|\mathfrak W_n'|/|\mathfrak W_n\vert\}$ is presented. In particular, it is proved that the subclass of groups with an abelian automorphism group is dense in the variety $\mathfrak W(p,k)$. Bibliography: 14 titles.
@article{SM_1985_50_2_a4,
     author = {P. M. Beletskii},
     title = {Dense subclasses in some varieties of two-step nilpotent groups},
     journal = {Sbornik. Mathematics},
     pages = {369--385},
     year = {1985},
     volume = {50},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_50_2_a4/}
}
TY  - JOUR
AU  - P. M. Beletskii
TI  - Dense subclasses in some varieties of two-step nilpotent groups
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 369
EP  - 385
VL  - 50
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1985_50_2_a4/
LA  - en
ID  - SM_1985_50_2_a4
ER  - 
%0 Journal Article
%A P. M. Beletskii
%T Dense subclasses in some varieties of two-step nilpotent groups
%J Sbornik. Mathematics
%D 1985
%P 369-385
%V 50
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1985_50_2_a4/
%G en
%F SM_1985_50_2_a4
P. M. Beletskii. Dense subclasses in some varieties of two-step nilpotent groups. Sbornik. Mathematics, Tome 50 (1985) no. 2, pp. 369-385. http://geodesic.mathdoc.fr/item/SM_1985_50_2_a4/

[1] Adamov S. N., “O konechnykh $p$-gruppakh s abelevymi gruppami avtomorfizmov”, Algebraicheskie issledovaniya, Sverdlovsk, 1976, 3–5

[2] Atya M., Makdonald I., Vvedenie v kommutativnuyu algebru, Mir, M., 1972 | MR

[3] Beletskii P. M., “O konechnykh $p$-gruppakh s nilpotentnymi gruppami avtomorfizmov”, XVI Vsesoyuznaya algebraicheskaya konf. Tez. dokl. Ch. II, L., 1981, 12–13

[4] Volkonskii A. M., “O konechnykh gruppakh s abelevymi gruppami avtomorfizmov”, XVI Vsesoyuznaya algebraicheskaya konf. Tez. dokl. Ch. II, L., 1981, 29

[5] Kourovskaya tetrad (nereshennye zadachi teorii grupp), In-t matematiki SO AN SSSR, Novosibirsk, 1976 | MR

[6] Maklein S., Gomologiya, Mir, M., 1976

[7] Bryant R. M., Kovàcs L. G., “Lie representations and groups of prime power order”, J. London Math. Soc., 17:3 (1978), 415–421 | DOI | MR | Zbl

[8] Heineken H., “Gruppen mit Kleinen abelschen Untergruppen”, Arch. Math. (Basel), 29:1 (1977), 20–31 | MR | Zbl

[9] Heineken H., Liebeck H., “The occurance of finite groups in the automorphism group of nilpotent groups of class 2”, Arch. Math., 25:1 (1974), 8–16 | DOI | MR | Zbl

[10] Higman G., “Enumerating $p$-groups. I.: Inequalities”, Proc. London Math. Soc., 10 (1960), 24–30 | DOI | MR | Zbl

[11] Jonah D., Konvisser M., “Some non-abelian p-groups with abelian automorphism groups”, Arch. Math., 26:2 (1975), 131–133 | DOI | MR | Zbl

[12] Liebeck H., “A note on prime power groups with symmetrical generating relations”, Proc. Cambdrige Phil. Soc., 51:2 (1955), 394–395 | DOI | MR | Zbl

[13] Sims Ch. C., “Enumerating $p$-groups”, Proc. London Math. Soc., 15:1 (1965), 151–166 | DOI | MR | Zbl