On an “arithmetic” functor
Sbornik. Mathematics, Tome 50 (1985) no. 2, pp. 533-538
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that for the values of $\mathrm{T\hat or}^k(M,N)$ to be noetherian it suffices that all five arguments be Noetherian (the ground ring, the local algebras over it, and the modules over these). Bibliography: 5 titles.
@article{SM_1985_50_2_a13,
author = {A. F. Ivanov},
title = {On an {\textquotedblleft}arithmetic{\textquotedblright} functor},
journal = {Sbornik. Mathematics},
pages = {533--538},
year = {1985},
volume = {50},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1985_50_2_a13/}
}
A. F. Ivanov. On an “arithmetic” functor. Sbornik. Mathematics, Tome 50 (1985) no. 2, pp. 533-538. http://geodesic.mathdoc.fr/item/SM_1985_50_2_a13/
[1] Kartan A., Eilenberg S., Gomologicheskaya algebra, IL, M., 1960
[2] Bass H., “On the ubiquity of Gorenstein rings”, Math. Z., 82:1 (1963), 8–28 | DOI | MR | Zbl
[3] Gabriel P., “Objets injectifs dans les catégories abéliennes”, Sem. P. Dubreil, M.-L. Dubreil-Jacotin et C. Pisot (Algèbre et théorie des nombres), 12e année, i. 2, exp. 17, 1958/59, 1–32
[4] Hartshorne R., Residues and Euality, No 20, Lect. Notes Math., Springer, Berlin–Heidelberg–New York, 1966 | MR | Zbl
[5] Serre J.-P., Algèbre locale. Multiplicités, No 11, Lect. Notes Math., 1965, Springer, Berlin–Heidelberg–New York, 1965 | MR