On an “arithmetic” functor
Sbornik. Mathematics, Tome 50 (1985) no. 2, pp. 533-538 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that for the values of $\mathrm{T\hat or}^k(M,N)$ to be noetherian it suffices that all five arguments be Noetherian (the ground ring, the local algebras over it, and the modules over these). Bibliography: 5 titles.
@article{SM_1985_50_2_a13,
     author = {A. F. Ivanov},
     title = {On an {\textquotedblleft}arithmetic{\textquotedblright} functor},
     journal = {Sbornik. Mathematics},
     pages = {533--538},
     year = {1985},
     volume = {50},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_50_2_a13/}
}
TY  - JOUR
AU  - A. F. Ivanov
TI  - On an “arithmetic” functor
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 533
EP  - 538
VL  - 50
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1985_50_2_a13/
LA  - en
ID  - SM_1985_50_2_a13
ER  - 
%0 Journal Article
%A A. F. Ivanov
%T On an “arithmetic” functor
%J Sbornik. Mathematics
%D 1985
%P 533-538
%V 50
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1985_50_2_a13/
%G en
%F SM_1985_50_2_a13
A. F. Ivanov. On an “arithmetic” functor. Sbornik. Mathematics, Tome 50 (1985) no. 2, pp. 533-538. http://geodesic.mathdoc.fr/item/SM_1985_50_2_a13/

[1] Kartan A., Eilenberg S., Gomologicheskaya algebra, IL, M., 1960

[2] Bass H., “On the ubiquity of Gorenstein rings”, Math. Z., 82:1 (1963), 8–28 | DOI | MR | Zbl

[3] Gabriel P., “Objets injectifs dans les catégories abéliennes”, Sem. P. Dubreil, M.-L. Dubreil-Jacotin et C. Pisot (Algèbre et théorie des nombres), 12e année, i. 2, exp. 17, 1958/59, 1–32

[4] Hartshorne R., Residues and Euality, No 20, Lect. Notes Math., Springer, Berlin–Heidelberg–New York, 1966 | MR | Zbl

[5] Serre J.-P., Algèbre locale. Multiplicités, No 11, Lect. Notes Math., 1965, Springer, Berlin–Heidelberg–New York, 1965 | MR