, $f(x)=a_nx^n+\dots+a_1x$ is a polynomial with integer coefficients, and $(a_n,\dots,a_2,q)=d$. Hua proved that an incomplete trigonometric sum of the form $$ s(f,q,p)=\sum_{x=1}^pe^{2\pi i\frac{f(x)}q} $$ satisfies the estimate $$ |s(f,q,p)|\ll q^{1-\frac1n+\varepsilon}d^\frac1n\qquad(\varepsilon>0). $$ In this paper sharper estimates are obtained for $n>2$: $$ |s(f,q,p)|\ll q^{1-\frac1n}d^\frac1n $$ and $$ |s(f,q,p)|\ll pq^{-\frac1n+\varepsilon}d^\frac1n+q^{1-\frac1n+\varepsilon}d^\frac1n\biggl(\frac qd\biggr)^{-\rho}, $$ where $\rho=(n-1)/n(n^2-n+1)$. A consequence of the last estimate is that the same type of estimate holds for the number of solutions of the congruence $$ f(x)\equiv c\pmod q;\qquad1\leqslant x\leqslant p. $$ The proofs are based on estimates for complete rational trigonometric sums with prime power denominator which are obtained by Hua's method (this method has also been developed by V. I. Nechaev, C. Chen, S. B. Stechkin and S. V. Konyagin). Bibliography: 24 titles.
@article{SM_1985_50_2_a12,
author = {D. A. Mit'kin},
title = {On estimates and asymptotic formulas for rational trigonometric sums that are almost complete},
journal = {Sbornik. Mathematics},
pages = {513--532},
year = {1985},
volume = {50},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1985_50_2_a12/}
}
D. A. Mit'kin. On estimates and asymptotic formulas for rational trigonometric sums that are almost complete. Sbornik. Mathematics, Tome 50 (1985) no. 2, pp. 513-532. http://geodesic.mathdoc.fr/item/SM_1985_50_2_a12/
[1] Vinogradov I. M., Metod trigonometricheskikh summ v teorii chisel, Nauka, M. | MR
[2] Khua Lo-Ken, Metod trigonometricheskikh summ i ego primeneniya v teorii chisel, Mir, M., 1964 | MR | Zbl
[3] Vinogradov I. M., “Verkhnyaya granitsa modulya trigonometricheskoi summy”, Izv. AN SSSR. Seriya matem., 14 (1950), 199–214 | MR
[4] Korobov N. M., “Otsenki summ Veilya i raspredelenie prostykh chisel”, DAN SSSR, 123 (1958), 28–31 | MR | Zbl
[5] Karatsuba A. A., “Otsenki trigonometricheskikh summ osobogo vida i ikh prilozheniya”, DAN SSSR, 137 (1961), 513–514 | Zbl
[6] Karatsuba A. A., “Analog problemy Varinga”, Vestn. MGU. Seriya matem. i mekh., 1962, no. 1, 38–46 | Zbl
[7] Karatsuba A. A., “Raspredelenie drobnykh dolei mnogochlenov spetsialnogo vida”, Vestn. MGU. Seriya matem. i mekh., 1962, no. 3, 34–39
[8] Karatsuba A. A., “Trigonometricheskie summy spetsialnogo vida i ikh prilozheniya”, Izv. AN SSSR. Seriya matem., 28 (1964), 237–248 | Zbl
[9] Karatsuba A. A., “Asimptoticheskie formuly dlya nekotorogo klassa trigonometricheskikh summ”, DAN SSSR, 169 (1966), 9–11 | Zbl
[10] Karatsuba A. A., “O trigonometricheskikh summakh”, DAN SSSR, 189 (1969), 31–34 | Zbl
[11] Korobov N. M., “Dvoinye trigonometricheskie summy i ikh prilozheniya k otsenke ratsionalnykh summ”, Matem. zametki, 6:1 (1969), 25–34 | MR | Zbl
[12] Hua Loo-Keng, Additive Primzahlentheorie, Teubner, Leipzig, 1959 | MR
[13] Nechaev V. I., “O predstavlenii naturalnykh chisel summoi slagaemykh vida $\dfrac{x(x+1)\dotsb(x+n-1)}{n!}$”, Izv. AN SSSR. Seriya matem., 17 (1953), 485–498 | MR | Zbl
[14] Fiedler H., Jurkat W., Körner O., “Asymptotic expansions of finite theta series”, Acta arithm., 32:2 (1977), 129–145 | MR
[15] Hua L. K., “On exponential sums”, Science Record, 1 (1957), 1–4 | MR | Zbl
[16] Hua L. K., “On an exponential sum”, J. Chinese Math. Soc., 2 (1940), 301–312 | MR | Zbl
[17] Chen Chinq-jun., “On the representation of natural number as sum of terms of the form $\dfrac{x(x+1)\ldots(x+n-1)}{n!}$”, Acta Math. Sinica, 9:3 (1959), 264–270 | MR | Zbl
[18] Nechaev V. I., “Otsenka polnoi ratsionalnoi trigonometricheskoi summy”, Matem. zametki, 17 (1975), 839–849 | Zbl
[19] Stechkin S. B., “Otsenka polnoi ratsionalnoi trigonometricheskoi summy”, Trudy MI AN, 143 (1977), 188–207 | Zbl
[20] Weil A., “On some exponential sums”, Proc. Nat. Acad. Sci. USA, 34:5 (1948), 204–207 | DOI | MR | Zbl
[21] Vinogradov I. M., Osnovy teorii chisel, Nauka, M., 1981 | MR
[22] Shparlinskii I. E., “Otsenki trigonometricheskikh summ dlya rekurrentnykh posledovatelnostei i ikh prilozheniya”, Izv. Voronezhskogo gos. ped. in-ta, 197 (1978), 74–85
[23] Shparlinskii I. E., Arifmeticheskie svoistva rekurrentnykh posledovatelnostei i ikh nekotorye primeneniya, Dis.$\dots$kand. fiz.-matem. nauk/Mosk. gos. ped. in-t im. V. I. Lenina, M., 1980
[24] Konyagin S. V., “O chisle reshenii sravneniya $n$-i stepeni s odnim neizvestnym”, Matem. sb., 109 (151) (1979), 171–187 | MR | Zbl