The relation between the solid modulus of continuity and the modulus of continuity along the Shilov boundary for analytic functions of several variables
Sbornik. Mathematics, Tome 50 (1985) no. 2, pp. 495-511

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G\subset\mathbf C^n$ be a bounded doamin and let $\omega$ be a modulus of continuity. This article is devoted to the following problem: which closed sets $S$ with $S\subset\overline G$ possess the property that, for an arbitrary function $f$ belonging to the algebra $A(G)$ of all functions analytic in $G$ and continuous in $\overline G$, the relation $$ \max_{z,\zeta\in S,|z-\zeta|\leqslant\delta}|f(z)-f(\zeta)|\leqslant\omega(\delta) $$ for all $\delta>0$ implies $$ \max_{z,\zeta\in\overline G,|z-\zeta|\leqslant\delta}|f(z)-f(\zeta)|\leqslant C\omega(\delta) $$ for all $\delta>0$, where the constant $C$ depends only on $G$ and $S$. The main result is a theorem which asserts that if $G$ is a regular Weil domain then $S$ can be taken to be the Shilov boundary. Bibliography: 20 titles.
@article{SM_1985_50_2_a11,
     author = {B. J\"oricke},
     title = {The relation between the solid modulus of continuity and the modulus of continuity along the {Shilov} boundary for analytic functions of several variables},
     journal = {Sbornik. Mathematics},
     pages = {495--511},
     publisher = {mathdoc},
     volume = {50},
     number = {2},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_50_2_a11/}
}
TY  - JOUR
AU  - B. Jöricke
TI  - The relation between the solid modulus of continuity and the modulus of continuity along the Shilov boundary for analytic functions of several variables
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 495
EP  - 511
VL  - 50
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1985_50_2_a11/
LA  - en
ID  - SM_1985_50_2_a11
ER  - 
%0 Journal Article
%A B. Jöricke
%T The relation between the solid modulus of continuity and the modulus of continuity along the Shilov boundary for analytic functions of several variables
%J Sbornik. Mathematics
%D 1985
%P 495-511
%V 50
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1985_50_2_a11/
%G en
%F SM_1985_50_2_a11
B. Jöricke. The relation between the solid modulus of continuity and the modulus of continuity along the Shilov boundary for analytic functions of several variables. Sbornik. Mathematics, Tome 50 (1985) no. 2, pp. 495-511. http://geodesic.mathdoc.fr/item/SM_1985_50_2_a11/