The relation between the solid modulus of continuity and the modulus of continuity along the Shilov boundary for analytic functions of several variables
Sbornik. Mathematics, Tome 50 (1985) no. 2, pp. 495-511 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $G\subset\mathbf C^n$ be a bounded doamin and let $\omega$ be a modulus of continuity. This article is devoted to the following problem: which closed sets $S$ with $S\subset\overline G$ possess the property that, for an arbitrary function $f$ belonging to the algebra $A(G)$ of all functions analytic in $G$ and continuous in $\overline G$, the relation $$ \max_{z,\zeta\in S,|z-\zeta|\leqslant\delta}|f(z)-f(\zeta)|\leqslant\omega(\delta) $$ for all $\delta>0$ implies $$ \max_{z,\zeta\in\overline G,|z-\zeta|\leqslant\delta}|f(z)-f(\zeta)|\leqslant C\omega(\delta) $$ for all $\delta>0$, where the constant $C$ depends only on $G$ and $S$. The main result is a theorem which asserts that if $G$ is a regular Weil domain then $S$ can be taken to be the Shilov boundary. Bibliography: 20 titles.
@article{SM_1985_50_2_a11,
     author = {B. J\"oricke},
     title = {The relation between the solid modulus of continuity and the modulus of continuity along the {Shilov} boundary for analytic functions of several variables},
     journal = {Sbornik. Mathematics},
     pages = {495--511},
     year = {1985},
     volume = {50},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_50_2_a11/}
}
TY  - JOUR
AU  - B. Jöricke
TI  - The relation between the solid modulus of continuity and the modulus of continuity along the Shilov boundary for analytic functions of several variables
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 495
EP  - 511
VL  - 50
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1985_50_2_a11/
LA  - en
ID  - SM_1985_50_2_a11
ER  - 
%0 Journal Article
%A B. Jöricke
%T The relation between the solid modulus of continuity and the modulus of continuity along the Shilov boundary for analytic functions of several variables
%J Sbornik. Mathematics
%D 1985
%P 495-511
%V 50
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1985_50_2_a11/
%G en
%F SM_1985_50_2_a11
B. Jöricke. The relation between the solid modulus of continuity and the modulus of continuity along the Shilov boundary for analytic functions of several variables. Sbornik. Mathematics, Tome 50 (1985) no. 2, pp. 495-511. http://geodesic.mathdoc.fr/item/SM_1985_50_2_a11/

[1] Tamrazov P. M., “Konturnye i telesnye strukturnye svoistva golomorfnykh funktsii kompleksnogo peremennogo”, UMN, 28:1 (1973), 131–161 | MR | Zbl

[2] Shekhorskii A. I., Konturno-telesnye teoremy golomorfnykh funktsii v $\mathbf{C}^n$, Preprint, 1977

[3] Shekhorskii A. I., Nekotorye differentsialnye svoistva golomorfnykh otobrazhenii, Preprint, 1979

[4] Shekhorskii A. I., Nekotorye konturno-telesnye svoistva golomorfnykh funktsii v $\mathbf{C}^n$, Preprint, 1979

[5] Chirka E. M., “Analiticheskoe predstavlenie $CR$-funktsii”, Matem. sb., 98 (140) (1975), 591–623 | Zbl

[6] Khërmander L., Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Mir, M., 1968 | MR

[7] Narasimkhan R., Analiz na deistvitelnykh i kompleksnykh mnogoobraziyakh, Mir, M., 1971 | Zbl

[8] Vladimirov V. S., Metody teorii funktsii mnogikh kompleksnykh peremennykh, Nauka, M., 1964 | MR

[9] Rubel L. A., Shields A. L., Taylor B. A., “Mergelyan sets and the modulus of continuity”, J. Appr. Theory, 104 (1973), 457–460 | MR

[10] Rubel L. A., Shields A. L., Taylor B. A., “Mergelyan sets and the modulus of continuity of analytic functions”, J. Appr. Theory, 15:1 (1975), 23–40 | DOI | MR | Zbl

[11] Shapiro H. S., “The modulus of continuity of an analytic function”, Lecture Notes of Math., 512 (1976), 131–138 | DOI | MR | Zbl

[12] Fröhlicher A., “Zur Differentialgeometrie der komplexen Strukturen”, Math. Ann., 129 (1955), 50–95 | DOI | MR

[13] Sommer Fr., “Komplex-analytische Blätterung reeller Mannigfaltigkeiten im $\mathbf{C}^n$”, Math. Ann., 136 (1958), 111–133 | DOI | MR | Zbl

[14] Bremermann H. J., “On a generalized Dirichlet problem for plurisubharmonic functions and pseudo-convex domains. Characterization of Silov boundaries”, Trans. Amer. Math. Soc., 91 (1959), 246–276 | DOI | MR | Zbl

[15] Basener R. F., “Peak points, barriers and pseudoconvex boundary points”, Proc. Amer. Math. Soc., 65:1 (1977), 89–92 | DOI | MR | Zbl

[16] Khenkin G. M., Chirka E. M., “Granichnye svoistva golomorfnykh funktsii neskolkikh kompleksnykh peremennykh”, Sovr. probl. matem., 4, M., 1975, 13–142 | Zbl

[17] Carleson L., The Corona Theorem (Proceed. 15th Scandinav. Congress, Oslo 1968), Lecture Notes of Math., 118, 1970 | MR | Zbl

[18] Hormander L., “Generators for some rings of analytic functions”, Bull. Amer. Math. Soc., 73 (1967), 943–947 | DOI | MR

[19] Glicksberg I., “Boundary continuity of some holomorphic functions”, Pacif. J. Math., 80:2 (1979), 425–434 | MR | Zbl

[20] Ërikke B., “Mnogomernyi analog teoremy Privalova”, Math. Nachr., 107 (1982), 221–233 | DOI