The existence of statistical solutions of the stochastic system of von Kármán equations in a bounded domain
Sbornik. Mathematics, Tome 50 (1985) no. 2, pp. 279-298 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The existence of statistical solutions of the stochastic system of von Kármán equations originating in the nonlinear mechanics of sloping elastic shells is shown. Solutions are obtained as weak limit points of distributions corresponding to Galerkin approximations of the system. Properties of solutions are studied. Methods developed in the framework of statistical hydromechanics are used. Bibliography: 10 titles.
@article{SM_1985_50_2_a0,
     author = {I. D. Chueshov},
     title = {The existence of statistical solutions of the stochastic system of von {K\'arm\'an} equations in a~bounded domain},
     journal = {Sbornik. Mathematics},
     pages = {279--298},
     year = {1985},
     volume = {50},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_50_2_a0/}
}
TY  - JOUR
AU  - I. D. Chueshov
TI  - The existence of statistical solutions of the stochastic system of von Kármán equations in a bounded domain
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 279
EP  - 298
VL  - 50
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1985_50_2_a0/
LA  - en
ID  - SM_1985_50_2_a0
ER  - 
%0 Journal Article
%A I. D. Chueshov
%T The existence of statistical solutions of the stochastic system of von Kármán equations in a bounded domain
%J Sbornik. Mathematics
%D 1985
%P 279-298
%V 50
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1985_50_2_a0/
%G en
%F SM_1985_50_2_a0
I. D. Chueshov. The existence of statistical solutions of the stochastic system of von Kármán equations in a bounded domain. Sbornik. Mathematics, Tome 50 (1985) no. 2, pp. 279-298. http://geodesic.mathdoc.fr/item/SM_1985_50_2_a0/

[1] Vorovich I. I., “Statisticheskii metod v teorii ustoichivosti obolochek”, Prikl. matem. i mekh., 23 (1959), 885–891

[2] Vorovich I. I., “Needinstvennost i ustoichivost v nelineinoi mekhanike sploshnoi sredy. Nekotorye matematicheskie problemy”, Nereshennye zadachi mekhaniki i prikladnoi matematiki, MGU, M., 1977, 10–47

[3] Vorovich I. I., “O nekotorykh pryamykh metodakh v nelineinoi teorii pologikh obolochek”, Izv. AN SSSR. Seriya matem., 21 (1957), 747–784

[4] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[5] Vishik M. I., Komech A. I., Fursikov A. V., “Nekotorye matematicheskie zadachi statisticheskoi gidromekhaniki”, UMN, 34:5 (1979), 135–210 | MR | Zbl

[6] Vishik M. I.,Fursikov A. V., Matematicheskie zadachi statisticheskoi gidromekhaniki., Nauka, M., 1980 | MR

[7] Khrychev D. A., “Ob odnom stokhasticheskom kvazilineinom giperbolicheskom uravnenii”, Matem. sb., 116(158) (1981), 398–427 | MR

[8] Khasminskii R. Z., Ustoichivost sistem differentsialnykh uravnenii pri sluchainykh vozmuscheniyakh ikh parametrov, Nauka, M., 1969 | MR

[9] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[10] Krylov N. V., Rozovskii B. L., “Ob evolyutsionnykh stokhasticheskikh uravneniyakh”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 14, VINITI, M., 1979, 72–147