Volume and fundamental group of a manifold of nonpositive curvature
Sbornik. Mathematics, Tome 50 (1985) no. 1, pp. 137-150 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The relationship between the volume $v(M)$ and the fundamental group $\pi_1(M)$ of a closed manifold $M$ of nonpositive curvature $K_\sigma$, $-1\leqslant K_\sigma\leqslant0$, is studied. The main result asserts that if $\pi_1(M)$ does not contain nontrivial normal abelian subgroups, then $$ v(M)\geqslant\beta_ne^{-\alpha_nD(M)}, $$ where $D(M)$ is the diameter of $M$ and $\alpha_n$, $\beta_n>0$ depend only on the dimension of $M$. From this it follows, in particular, that for given $n\geqslant2$ and $C>0$ there exist only finitely many pairwise nonhomeomorphic $n$-dimensional closed $M$ with $-1\leqslant K_\sigma\leqslant0$ and $D(M)\leqslant C$. Figures: 1. Bibliography: 9 titles.
@article{SM_1985_50_1_a8,
     author = {S. V. Buyalo},
     title = {Volume and fundamental group of a~manifold of nonpositive curvature},
     journal = {Sbornik. Mathematics},
     pages = {137--150},
     year = {1985},
     volume = {50},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_50_1_a8/}
}
TY  - JOUR
AU  - S. V. Buyalo
TI  - Volume and fundamental group of a manifold of nonpositive curvature
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 137
EP  - 150
VL  - 50
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1985_50_1_a8/
LA  - en
ID  - SM_1985_50_1_a8
ER  - 
%0 Journal Article
%A S. V. Buyalo
%T Volume and fundamental group of a manifold of nonpositive curvature
%J Sbornik. Mathematics
%D 1985
%P 137-150
%V 50
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1985_50_1_a8/
%G en
%F SM_1985_50_1_a8
S. V. Buyalo. Volume and fundamental group of a manifold of nonpositive curvature. Sbornik. Mathematics, Tome 50 (1985) no. 1, pp. 137-150. http://geodesic.mathdoc.fr/item/SM_1985_50_1_a8/

[1] Gromoll D., Wolf J. A., “Some relations between the metric structure and the algebraic structure of the fundamental groups in manifolds of nonpositive curvature”, Bull. Amer. Math. Soc., 77:4 (1971), 545–552 | DOI | MR | Zbl

[2] Cheeger J., Ebin D., “Comparison theorems in riemannian geometry”, North-Holland Math. Library, 1975, no. 9 | MR

[3] Burago Yu. D., Zalgaller V. A., Geometricheskie neravenstva, Nauka, L., 1980 | MR | Zbl

[4] Cheeger J., “Finiteness theorems for Riemannian manifolds”, Amer. J. Math., 92:1 (1970), 61–74 | DOI | MR | Zbl

[5] Buyalo S. V., “Mnogoobraziya nepolozhitelnoi krivizny s malym ob'emom”, Matem. zametki, 29:2 (1981), 243–252 | MR | Zbl

[6] Gromov M., “Manifolds of negative curvature”, J. Diff. Geom., 13:2 (1978), 223–230 | MR | Zbl

[7] Lawson H. S., Yau S. T., “Compact manifolds of nonpositive curvature”, J. Diff. Geom., 7 (1972), 211–228 | MR | Zbl

[8] Wolf J. A., “Homogeneity and bounded isometries in manifolds of negative curvature”, Illinois J. Math., 1964, no. 8, 14–18 | MR | Zbl

[9] Buyalo S. V., “Ob'em i fundamentalnaya gruppa mnogoobraziya nepolozhitelnoi krivizny”, Tezisy dokladov simpoziuma po geometrii v tselom i osnovaniyam teorii otnositelnosti, Novosibirsk, 1982, 20–21