@article{SM_1985_50_1_a8,
author = {S. V. Buyalo},
title = {Volume and fundamental group of a~manifold of nonpositive curvature},
journal = {Sbornik. Mathematics},
pages = {137--150},
year = {1985},
volume = {50},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1985_50_1_a8/}
}
S. V. Buyalo. Volume and fundamental group of a manifold of nonpositive curvature. Sbornik. Mathematics, Tome 50 (1985) no. 1, pp. 137-150. http://geodesic.mathdoc.fr/item/SM_1985_50_1_a8/
[1] Gromoll D., Wolf J. A., “Some relations between the metric structure and the algebraic structure of the fundamental groups in manifolds of nonpositive curvature”, Bull. Amer. Math. Soc., 77:4 (1971), 545–552 | DOI | MR | Zbl
[2] Cheeger J., Ebin D., “Comparison theorems in riemannian geometry”, North-Holland Math. Library, 1975, no. 9 | MR
[3] Burago Yu. D., Zalgaller V. A., Geometricheskie neravenstva, Nauka, L., 1980 | MR | Zbl
[4] Cheeger J., “Finiteness theorems for Riemannian manifolds”, Amer. J. Math., 92:1 (1970), 61–74 | DOI | MR | Zbl
[5] Buyalo S. V., “Mnogoobraziya nepolozhitelnoi krivizny s malym ob'emom”, Matem. zametki, 29:2 (1981), 243–252 | MR | Zbl
[6] Gromov M., “Manifolds of negative curvature”, J. Diff. Geom., 13:2 (1978), 223–230 | MR | Zbl
[7] Lawson H. S., Yau S. T., “Compact manifolds of nonpositive curvature”, J. Diff. Geom., 7 (1972), 211–228 | MR | Zbl
[8] Wolf J. A., “Homogeneity and bounded isometries in manifolds of negative curvature”, Illinois J. Math., 1964, no. 8, 14–18 | MR | Zbl
[9] Buyalo S. V., “Ob'em i fundamentalnaya gruppa mnogoobraziya nepolozhitelnoi krivizny”, Tezisy dokladov simpoziuma po geometrii v tselom i osnovaniyam teorii otnositelnosti, Novosibirsk, 1982, 20–21