The Korteweg-de Vries equation in classes of increasing functions with prescribed asymptotics as $|x|\to\infty$
Sbornik. Mathematics, Tome 50 (1985) no. 1, pp. 125-135
Voir la notice de l'article provenant de la source Math-Net.Ru
The Cauchy problem is considered for the Korteweg–de Vries equation with an increasing initial function admitting an asymptotic expansion in decreasing powers of $x$ as $|x|\to\infty$. It is proved that asymptotic solutions having the form of series in decreasing powers of $x$ differ from the actual solutions by a function $w(x,t)$ smooth in $t$ with values in $S(\mathbf R_x)$.
Bibliography: 3 titles.
@article{SM_1985_50_1_a7,
author = {I. N. Bondareva},
title = {The {Korteweg-de} {Vries} equation in classes of increasing functions with prescribed asymptotics as $|x|\to\infty$},
journal = {Sbornik. Mathematics},
pages = {125--135},
publisher = {mathdoc},
volume = {50},
number = {1},
year = {1985},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1985_50_1_a7/}
}
TY - JOUR AU - I. N. Bondareva TI - The Korteweg-de Vries equation in classes of increasing functions with prescribed asymptotics as $|x|\to\infty$ JO - Sbornik. Mathematics PY - 1985 SP - 125 EP - 135 VL - 50 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1985_50_1_a7/ LA - en ID - SM_1985_50_1_a7 ER -
I. N. Bondareva. The Korteweg-de Vries equation in classes of increasing functions with prescribed asymptotics as $|x|\to\infty$. Sbornik. Mathematics, Tome 50 (1985) no. 1, pp. 125-135. http://geodesic.mathdoc.fr/item/SM_1985_50_1_a7/