Existence, nonexistence and regularity theorems in a~problem with a~free boundary
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 50 (1985) no. 1, pp. 67-84
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A problem for the Laplace equation in a plane region, part of whose boundary (namely the inside boundary of the region) is unknown, is studied. On this portion of the boundary, denoted by $\gamma$, the solution of the Laplace equation satisfies the zero Dirichlet condition and a given Neumann type condition. On the outside (given) boundary of the region, the solution assumes a constant value. Solvability, as well as insolvability, conditions are studied for the problem with an a priori given topological type of free boundary (the curve $\gamma$ is homeomorphic to a circle or to the union of two circles). The question of regularity of the curve $\gamma$ is considered.
Figures: 3.
Bibliography: 8 titles.
			
            
            
            
          
        
      @article{SM_1985_50_1_a4,
     author = {A. Badzhadi and A. S. Demidov},
     title = {Existence, nonexistence and regularity theorems in a~problem with a~free boundary},
     journal = {Sbornik. Mathematics},
     pages = {67--84},
     publisher = {mathdoc},
     volume = {50},
     number = {1},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_50_1_a4/}
}
                      
                      
                    TY - JOUR AU - A. Badzhadi AU - A. S. Demidov TI - Existence, nonexistence and regularity theorems in a~problem with a~free boundary JO - Sbornik. Mathematics PY - 1985 SP - 67 EP - 84 VL - 50 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1985_50_1_a4/ LA - en ID - SM_1985_50_1_a4 ER -
A. Badzhadi; A. S. Demidov. Existence, nonexistence and regularity theorems in a~problem with a~free boundary. Sbornik. Mathematics, Tome 50 (1985) no. 1, pp. 67-84. http://geodesic.mathdoc.fr/item/SM_1985_50_1_a4/
