On properties of functions of bounded variation on a~set
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 50 (1985) no. 1, pp. 41-66
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The Kolmogorov inequality for conjugate functions is generalized in § 1. Theorem 2 is the main result; it shows, for example, that if a function $F$ is $2\pi$-periodic to within linearity and of bounded variation in the narrow sense on a set $E\subset[0,2\pi)$, then for any $\lambda>0$
$$
\bigg|\bigg\{x\in E:\sup_{0\leqslant r>1}|\overline{F'}(r,x)|>\lambda\bigg\}\bigg|^*\leqslant\frac C\lambda{\operatornamewithlimits{Var}_E}^*F.
$$ In § 2 a well-known theorem of F. and M. Riesz is generalized. In particular, the following is proved.
Theorem 5. {\it Suppose that a $2\pi$-periodic integrable function $\Phi$ and its conjugate $\overline\Phi$ are defined everywhere$,$ bounded$,$ and of bounded variation in the narrow sense on a set $E\subset[0,2\pi),$ and that $\Phi(x)=\lim_{E\ni t\to x}\Phi(t)$ and $\overline\Phi(x)=\lim_{E\ni t\to x}\overline\Phi(t)$ if $\lim_{E\ni t\to x}\Phi(t)$ and $\lim_{E\ni t\to x}\overline\Phi(t)$ exist at a point $x$. Then $\Phi$ and $\overline\Phi$ are absolutely continuous in the narrow sense on $E$.}
Bibliography: 14 titles.
			
            
            
            
          
        
      @article{SM_1985_50_1_a3,
     author = {T. P. Lukashenko},
     title = {On properties of functions of bounded variation on a~set},
     journal = {Sbornik. Mathematics},
     pages = {41--66},
     publisher = {mathdoc},
     volume = {50},
     number = {1},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_50_1_a3/}
}
                      
                      
                    T. P. Lukashenko. On properties of functions of bounded variation on a~set. Sbornik. Mathematics, Tome 50 (1985) no. 1, pp. 41-66. http://geodesic.mathdoc.fr/item/SM_1985_50_1_a3/
