On properties of functions of bounded variation on a set
Sbornik. Mathematics, Tome 50 (1985) no. 1, pp. 41-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Kolmogorov inequality for conjugate functions is generalized in § 1. Theorem 2 is the main result; it shows, for example, that if a function $F$ is $2\pi$-periodic to within linearity and of bounded variation in the narrow sense on a set $E\subset[0,2\pi)$, then for any $\lambda>0$ $$ \bigg|\bigg\{x\in E:\sup_{0\leqslant r>1}|\overline{F'}(r,x)|>\lambda\bigg\}\bigg|^*\leqslant\frac C\lambda{\operatornamewithlimits{Var}_E}^*F. $$ In § 2 a well-known theorem of F. and M. Riesz is generalized. In particular, the following is proved. Theorem 5. {\it Suppose that a $2\pi$-periodic integrable function $\Phi$ and its conjugate $\overline\Phi$ are defined everywhere$,$ bounded$,$ and of bounded variation in the narrow sense on a set $E\subset[0,2\pi),$ and that $\Phi(x)=\lim_{E\ni t\to x}\Phi(t)$ and $\overline\Phi(x)=\lim_{E\ni t\to x}\overline\Phi(t)$ if $\lim_{E\ni t\to x}\Phi(t)$ and $\lim_{E\ni t\to x}\overline\Phi(t)$ exist at a point $x$. Then $\Phi$ and $\overline\Phi$ are absolutely continuous in the narrow sense on $E$.} Bibliography: 14 titles.
@article{SM_1985_50_1_a3,
     author = {T. P. Lukashenko},
     title = {On properties of functions of bounded variation on a~set},
     journal = {Sbornik. Mathematics},
     pages = {41--66},
     year = {1985},
     volume = {50},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_50_1_a3/}
}
TY  - JOUR
AU  - T. P. Lukashenko
TI  - On properties of functions of bounded variation on a set
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 41
EP  - 66
VL  - 50
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1985_50_1_a3/
LA  - en
ID  - SM_1985_50_1_a3
ER  - 
%0 Journal Article
%A T. P. Lukashenko
%T On properties of functions of bounded variation on a set
%J Sbornik. Mathematics
%D 1985
%P 41-66
%V 50
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1985_50_1_a3/
%G en
%F SM_1985_50_1_a3
T. P. Lukashenko. On properties of functions of bounded variation on a set. Sbornik. Mathematics, Tome 50 (1985) no. 1, pp. 41-66. http://geodesic.mathdoc.fr/item/SM_1985_50_1_a3/

[1] Bari N. K., Trigonometricheskie ryady, GIFML, M., 1961 | MR

[2] Zigmund A., Trigonometricheskie ryady, I, Mir, M., 1965 | MR

[3] Kolmogorov A. N., “Sur les fonctions harmoniques conjuguees et les series de Fourier”, Fund. Math., 7 (1925), 23–28

[4] Loomis L., “A note on Hilbert's transform”, Bull. Amer. Math. Soc., 52:12 (1946), 1082–1086 | DOI | MR | Zbl

[5] Saks S., Teoriya integrala, IL, M., 1949

[6] Riesz F., Riesz M., “Über Randwerte einer analytischen Funktion”, Quart. Congres des Math. Scand., 1916, 27–44 | Zbl

[7] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | MR | Zbl

[8] Marcinkiewics J., “Sur les series de Fourier”, Fund. Math., 27 (1936), 36–69

[9] Ward A. J., “The Perron–Stieltjes Integral”, Math. Zeitschr., 41:4 (1936), 578–604 | DOI | MR | Zbl

[10] Lukashenko T. P., “O mazhorantakh $D$-integriruemykh funktsii”, Matem. sbornik, 110(152) (1979), 440–453 | MR | Zbl

[11] Lukashenko T. P., “O funktsiyakh s ogranichennym izmeneniem na mnozhestve”, Matematika. Tezisy dokl. sedmoi kazakhst. mezhvuz. nauch. konf. po matem. i mekh. (15-18 sentyabrya 1981 g.), Izd-vo Karag. gos. un-ta, Karaganda, 1981, 28–29

[12] Lukashenko T. P., “O funktsiyakh obobschennoi ogranichennoi variatsii”, Izvestiya AN SSSR. Ser. matem., 46 (1982), 276–313 | MR

[13] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973 | MR

[14] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR