Finitely generated special Jordan and alternative $PI$-algebras
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 50 (1985) no. 1, pp. 31-40
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The author explores the question of whether identities related to special Jordan and alternative $PI$-algebras exist in associative algebras. It is proved that if $A$ is a finitely generated special Jordan (alternative) $PI$-algebra, then the universal associative enveloping algebra $S(A)$ (respectively, the universal algebra $\mathscr R(A)$ for right alternative representations) of algebra $A$ is also a $PI$-algebra. As a corollary it is proved that the upper nilradical of a finitely generated special Jordan or alternative $PI$-algebra over a Noetherian ring is nilpotent. A similar result holds for the Zhevlakov radical of a finitely generated free alternative algebra. In addition, a criterion is obtained for local associator nilpotence of an alternative algebra.
Bibliography: 19 titles.
			
            
            
            
          
        
      @article{SM_1985_50_1_a2,
     author = {I. P. Shestakov},
     title = {Finitely generated special {Jordan} and alternative $PI$-algebras},
     journal = {Sbornik. Mathematics},
     pages = {31--40},
     publisher = {mathdoc},
     volume = {50},
     number = {1},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_50_1_a2/}
}
                      
                      
                    I. P. Shestakov. Finitely generated special Jordan and alternative $PI$-algebras. Sbornik. Mathematics, Tome 50 (1985) no. 1, pp. 31-40. http://geodesic.mathdoc.fr/item/SM_1985_50_1_a2/
