The intermediate Jacobian of a three-dimensional conic bundle is a Prym variety
Sbornik. Mathematics, Tome 50 (1985) no. 1, pp. 269-277 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper contains the computation of the intermediate Jacobian of the general conic bundle. This computation is performed in three steps: a) computation of the Betti number (§ 2), b) computation of the Jacobian to within isogeny (§ 4), and c) computation of the polarization (§ 4). The author's results conclude the study of the intermediate Jacobian of conic bundles and give an efficient general answer. Bibliography: 6 titles.
@article{SM_1985_50_1_a17,
     author = {S. Yu. \`Endryushka},
     title = {The intermediate {Jacobian} of a~three-dimensional conic bundle is {a~Prym} variety},
     journal = {Sbornik. Mathematics},
     pages = {269--277},
     year = {1985},
     volume = {50},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_50_1_a17/}
}
TY  - JOUR
AU  - S. Yu. Èndryushka
TI  - The intermediate Jacobian of a three-dimensional conic bundle is a Prym variety
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 269
EP  - 277
VL  - 50
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1985_50_1_a17/
LA  - en
ID  - SM_1985_50_1_a17
ER  - 
%0 Journal Article
%A S. Yu. Èndryushka
%T The intermediate Jacobian of a three-dimensional conic bundle is a Prym variety
%J Sbornik. Mathematics
%D 1985
%P 269-277
%V 50
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1985_50_1_a17/
%G en
%F SM_1985_50_1_a17
S. Yu. Èndryushka. The intermediate Jacobian of a three-dimensional conic bundle is a Prym variety. Sbornik. Mathematics, Tome 50 (1985) no. 1, pp. 269-277. http://geodesic.mathdoc.fr/item/SM_1985_50_1_a17/

[1] Beauville A., “Varietes de Prym et Jakobiennes intermediaires”, ser. 4, Ann. scient. Ecol. norm. super., 10:3 (1977), 309–399 | MR

[2] Picco B. Z., Verra A., “An example of uniracional nonracional threefold wich is a conic bundle over a racional surface”, Proc. Ron. ned. akad. Wetensch., 83:1 (1980), 19–32

[3] Iskovskikh V. A., “Biratsionalnye avtomorfizmy trekhmernykh algebraicheskikh mnogoobrazii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 12, VINITI, M., 1979, 159–236 | MR

[4] Tyurin A. N., “Pyat lektsii o trekhmernykh mnogoobraziyakh”, UMN, 27:5 (1972), 3–50 | Zbl

[5] Beauville A., “Prym varieties and Schottky problem”, Inventiones Math., 41:2 (1977), 149–196 | DOI | MR | Zbl

[6] Zagorskii A. A., “O trekhmernykh konicheskikh rassloeniyakh”, Matem. zametki, 21:6 (1977), 745–758 | MR | Zbl