On the summability of generalized Fourier series by Abel's method
Sbornik. Mathematics, Tome 50 (1985) no. 1, pp. 227-239

Voir la notice de l'article provenant de la source Math-Net.Ru

For $2\pi$-periodic functions $f$ that have, on $[-\pi,\pi]$, only the point 0 as a nonsummable singular point, we consider generalized Fourier series depending on an integer-valued function $N(x)$. It is shown that if $|x|^{\alpha(x)}f(x)\in L(-\pi,\pi)$, where $\alpha(x)$ is an even nonnegative function, nonincreasing on $(0,\pi]$, and $\alpha(x)=o(\ln\frac1x)$, $x\to+0$, then under a certain condition on $N(x)$ the generalized Fourier series is almost everywhere summable to $f(x)$ by the Abel method. The estimate $o(\ln\frac1x)$ and the hypothesis on $N(x)$ are, in a certain sense, definitive. Bibliography: 3 titles.
@article{SM_1985_50_1_a14,
     author = {A. Yu. Petrovich},
     title = {On the summability of generalized {Fourier} series by {Abel's} method},
     journal = {Sbornik. Mathematics},
     pages = {227--239},
     publisher = {mathdoc},
     volume = {50},
     number = {1},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_50_1_a14/}
}
TY  - JOUR
AU  - A. Yu. Petrovich
TI  - On the summability of generalized Fourier series by Abel's method
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 227
EP  - 239
VL  - 50
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1985_50_1_a14/
LA  - en
ID  - SM_1985_50_1_a14
ER  - 
%0 Journal Article
%A A. Yu. Petrovich
%T On the summability of generalized Fourier series by Abel's method
%J Sbornik. Mathematics
%D 1985
%P 227-239
%V 50
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1985_50_1_a14/
%G en
%F SM_1985_50_1_a14
A. Yu. Petrovich. On the summability of generalized Fourier series by Abel's method. Sbornik. Mathematics, Tome 50 (1985) no. 1, pp. 227-239. http://geodesic.mathdoc.fr/item/SM_1985_50_1_a14/