Normal fibrations of polyhedra, and duality
Sbornik. Mathematics, Tome 50 (1985) no. 1, pp. 177-189

Voir la notice de l'article provenant de la source Math-Net.Ru

A duality theory is constructed in the category of stable finite fibrations over a finite polyhedron $X$. With the aid of this theory, a result is obtained about the stable characterization of the normal fibration of the polyhedron, in the class of finite reducible fibrations over $X$. As a corollary, the uniqueness theorem is proved for $\Lambda$-Spivak fibrations over $\Lambda$-Poincaré complexes, for an arbitrary commutative ring $\Lambda$. Also, a result is obtained concerning the space of stable self-equivalences of the fiber of the normal fibration of $X$. Bibliography: 10 titles.
@article{SM_1985_50_1_a11,
     author = {V. E. Kolosov},
     title = {Normal fibrations of polyhedra, and duality},
     journal = {Sbornik. Mathematics},
     pages = {177--189},
     publisher = {mathdoc},
     volume = {50},
     number = {1},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_50_1_a11/}
}
TY  - JOUR
AU  - V. E. Kolosov
TI  - Normal fibrations of polyhedra, and duality
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 177
EP  - 189
VL  - 50
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1985_50_1_a11/
LA  - en
ID  - SM_1985_50_1_a11
ER  - 
%0 Journal Article
%A V. E. Kolosov
%T Normal fibrations of polyhedra, and duality
%J Sbornik. Mathematics
%D 1985
%P 177-189
%V 50
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1985_50_1_a11/
%G en
%F SM_1985_50_1_a11
V. E. Kolosov. Normal fibrations of polyhedra, and duality. Sbornik. Mathematics, Tome 50 (1985) no. 1, pp. 177-189. http://geodesic.mathdoc.fr/item/SM_1985_50_1_a11/