Isometric immersions of domains of three-dimensional Lobachevskii space in five-dimensional Euclidean space, and the motion of a rigid body
Sbornik. Mathematics, Tome 50 (1985) no. 1, pp. 11-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper a connection is established between the theory of isometric immersions of a space of constant curvature and a classical problem of mechanics on the motion of a rigid body. Figures: 3. Bibliography: 6 titles.
@article{SM_1985_50_1_a1,
     author = {Yu. A. Aminov},
     title = {Isometric immersions of domains of three-dimensional {Lobachevskii} space in five-dimensional {Euclidean} space, and the motion of a~rigid body},
     journal = {Sbornik. Mathematics},
     pages = {11--30},
     year = {1985},
     volume = {50},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_50_1_a1/}
}
TY  - JOUR
AU  - Yu. A. Aminov
TI  - Isometric immersions of domains of three-dimensional Lobachevskii space in five-dimensional Euclidean space, and the motion of a rigid body
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 11
EP  - 30
VL  - 50
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1985_50_1_a1/
LA  - en
ID  - SM_1985_50_1_a1
ER  - 
%0 Journal Article
%A Yu. A. Aminov
%T Isometric immersions of domains of three-dimensional Lobachevskii space in five-dimensional Euclidean space, and the motion of a rigid body
%J Sbornik. Mathematics
%D 1985
%P 11-30
%V 50
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1985_50_1_a1/
%G en
%F SM_1985_50_1_a1
Yu. A. Aminov. Isometric immersions of domains of three-dimensional Lobachevskii space in five-dimensional Euclidean space, and the motion of a rigid body. Sbornik. Mathematics, Tome 50 (1985) no. 1, pp. 11-30. http://geodesic.mathdoc.fr/item/SM_1985_50_1_a1/

[1] Aminov Yu. A., “Ob izometricheskikh pogruzheniyakh oblastei $n$-mernogo prostranstva Lobachevskogo v $(2n-1)$-mernoe evklidovo prostranstvo”, DAN SSSR, 236 (1977), 521–524 | MR | Zbl

[2] Aminov Yu. A., “Izometricheskie pogruzheniya oblastei $n$-mernogo prostranstva Lobachevskogo v $(2n-1)$-mernoe evklidovo prostranstvo”, Matem. sb., 111(153) (1980), 402–433 | MR | Zbl

[3] Aminov Yu. A., “Mnogomernyi analog uravneniya “sinus Gordona” i dvizhenie tverdogo tela”, DAN SSSR, 264:5 (1980), 1113–1116 | MR

[4] Aminov Yu. A., “Preobrazovanie Bianki dlya oblasti mnogomernogo prostranstva Lobachevskogo”, Ukrainsk. geometr. sb., 1978, no. 21, 3–5 | MR | Zbl

[5] Arkhangelskii Yu. A., Analiticheskaya dinamika tverdogo tela, Nauka, M., 1977 | MR

[6] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR