Isometric immersions of domains of three-dimensional Lobachevskii space in five-dimensional Euclidean space, and the motion of a~rigid body
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 50 (1985) no. 1, pp. 11-30
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper a connection is established between the theory of isometric immersions of a space of constant curvature and a classical problem of mechanics on the motion of a rigid body.
Figures: 3.
Bibliography: 6 titles.
			
            
            
            
          
        
      @article{SM_1985_50_1_a1,
     author = {Yu. A. Aminov},
     title = {Isometric immersions of domains of three-dimensional {Lobachevskii} space in five-dimensional {Euclidean} space, and the motion of a~rigid body},
     journal = {Sbornik. Mathematics},
     pages = {11--30},
     publisher = {mathdoc},
     volume = {50},
     number = {1},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_50_1_a1/}
}
                      
                      
                    TY - JOUR AU - Yu. A. Aminov TI - Isometric immersions of domains of three-dimensional Lobachevskii space in five-dimensional Euclidean space, and the motion of a~rigid body JO - Sbornik. Mathematics PY - 1985 SP - 11 EP - 30 VL - 50 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1985_50_1_a1/ LA - en ID - SM_1985_50_1_a1 ER -
%0 Journal Article %A Yu. A. Aminov %T Isometric immersions of domains of three-dimensional Lobachevskii space in five-dimensional Euclidean space, and the motion of a~rigid body %J Sbornik. Mathematics %D 1985 %P 11-30 %V 50 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1985_50_1_a1/ %G en %F SM_1985_50_1_a1
Yu. A. Aminov. Isometric immersions of domains of three-dimensional Lobachevskii space in five-dimensional Euclidean space, and the motion of a~rigid body. Sbornik. Mathematics, Tome 50 (1985) no. 1, pp. 11-30. http://geodesic.mathdoc.fr/item/SM_1985_50_1_a1/
