Hecke rings for a covering of the symplectic group
Sbornik. Mathematics, Tome 49 (1984) no. 2, pp. 379-399 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the standard theta series of genus $n$, the Hecke rings $\hat D=\hat D(\Gamma_0^n(q),S^n(q))$, for a covering $\mathfrak{G}$ of the symplectic group $GSp_n^+(\mathbf R)$ are constructed. The special role of four subrings of $\hat D$ is described, as well as some finitely generated arithmetic subrings $\hat L_p^n(\varkappa)$. The latter are important in the study of multiplicative properties of the Fourier coefficients of Siegel modular forms of half-integral weight. Bibliography: 11 titles.
@article{SM_1984_49_2_a6,
     author = {V. G. Zhuravlev},
     title = {Hecke rings for a~covering of the symplectic group},
     journal = {Sbornik. Mathematics},
     pages = {379--399},
     year = {1984},
     volume = {49},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_49_2_a6/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - Hecke rings for a covering of the symplectic group
JO  - Sbornik. Mathematics
PY  - 1984
SP  - 379
EP  - 399
VL  - 49
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1984_49_2_a6/
LA  - en
ID  - SM_1984_49_2_a6
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T Hecke rings for a covering of the symplectic group
%J Sbornik. Mathematics
%D 1984
%P 379-399
%V 49
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1984_49_2_a6/
%G en
%F SM_1984_49_2_a6
V. G. Zhuravlev. Hecke rings for a covering of the symplectic group. Sbornik. Mathematics, Tome 49 (1984) no. 2, pp. 379-399. http://geodesic.mathdoc.fr/item/SM_1984_49_2_a6/

[1] Hecke E., “Herleitung des Euler-Produktes der Zetafunktion und einiger $L$-Reihen aus ihrer Funktionalgleichung”, Math. Ann., 119 (1944), 266–287 | DOI | MR | Zbl

[2] Wohlfahrt K., “Über Operatoren heckescher art bie modulformen reeller dimension”, Math. Nachr., 16 (1957), 233–256 | DOI | MR | Zbl

[3] Shimura G., “On modular forms of half integral weight”, Ann. Math., 97 (1973), 440–481 | DOI | MR | Zbl

[4] Maass H., Siegel's modular forms and Dirichlet series, No 216, Lecture Notes in Math., 1971 | Zbl

[5] Pure Appl. Math., v. 23, Acad. Press, N.-Y., London, 1966 | MR | Zbl | Zbl

[6] Shimura G., “On certain reciprocity-laws for theta-functions and modular forms”, Acta math., 141:1–2 (1978), 35–71 | DOI | MR | Zbl

[7] Andrianov A. N., Maloletkin G. N., “Povedenie teta-ryadov roda $n$ pri modulyarnykh podstanovkakh”, Izv. AN SSSR. Seriya matem., 39:2 (1975), 243–258 | MR | Zbl

[8] Shimura G., “Arithmetic of alternating forms and quaternion hermitian forms”, J. Math. Soc. Japan, 15 (1963), 33–65 | MR | Zbl

[9] Shimura G., Introduction to the arithmetic theory of automorphic functions, Iwanami Shoten Publ. and Princeton Univ. Press, Tokyo–Princeton, 1971 ; Shimura G., Vvedenie v arifmeticheskuyu teoriyu avtomorfnykh funktsii, Mir, M., 1973 | MR | Zbl | MR | Zbl

[10] Andrianov A. N., “Multiplikativnaya arifmetika zigelevykh modulyarnykh form”, UMN, 34:1 (1979), 67–135 | MR | Zbl

[11] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1972 | MR