Hecke rings for a~covering of the symplectic group
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 49 (1984) no. 2, pp. 379-399
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Using the standard theta series of genus $n$, the Hecke rings $\hat D=\hat D(\Gamma_0^n(q),S^n(q))$, for a covering $\mathfrak{G}$ of the symplectic group $GSp_n^+(\mathbf R)$ are constructed. The special role of four subrings of $\hat D$ is described, as well as some finitely generated arithmetic subrings $\hat L_p^n(\varkappa)$. The latter are important in the study of multiplicative properties of the Fourier coefficients of Siegel modular forms of half-integral weight.
Bibliography: 11 titles.
			
            
            
            
          
        
      @article{SM_1984_49_2_a6,
     author = {V. G. Zhuravlev},
     title = {Hecke rings for a~covering of the symplectic group},
     journal = {Sbornik. Mathematics},
     pages = {379--399},
     publisher = {mathdoc},
     volume = {49},
     number = {2},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_49_2_a6/}
}
                      
                      
                    V. G. Zhuravlev. Hecke rings for a~covering of the symplectic group. Sbornik. Mathematics, Tome 49 (1984) no. 2, pp. 379-399. http://geodesic.mathdoc.fr/item/SM_1984_49_2_a6/
