Scattering of plane longitudinal elastic waves by a~slender cavity of revolution. The case of axial incidence
Sbornik. Mathematics, Tome 49 (1984) no. 2, pp. 305-323
Voir la notice de l'article provenant de la source Math-Net.Ru
The system of equations of elasticity theory
$$
A(\partial_x)\overline u+\omega^2\rho\overline u=0,\quad x\in D_\varepsilon;\qquad T\overline u=0,\quad x\in S_\varepsilon,
$$
is solved in a homogeneous isotropic medium. Here $A(\partial_x)$ is a matrix differential operator, $T$ is the stress operator, $x\in R^3$, $\varepsilon>0$ is a small parameter, $S_\varepsilon$ is a smooth bounded closed surface of revolution, and $D_\varepsilon$ is the exterior of $S_\varepsilon$. The case where
$$
\overline u(x)=A_le^{ik_lz}\overline i_z+\overline u^{(s)}(x),\qquad A_l=\mathrm{const},
$$
is considered. The reflected wave $\overline u^{(s)}(x)$ satisfies the radiation condition. The asymptotics of $\overline u^{(s)}(x)$ is constructed with $O(\varepsilon^{(m)})$ precision as $\varepsilon\to+0$, where $m>0$ is arbitrary.
The formulas obtained are useful everywhere near $S_\varepsilon$, including its endpoints, and at a distance. The asymptotics of the scattering amplitudes of the reflected waves is found.
Figures: 1.
Bibliography: 16 titles.
@article{SM_1984_49_2_a2,
author = {G. V. Zhdanova},
title = {Scattering of plane longitudinal elastic waves by a~slender cavity of revolution. {The} case of axial incidence},
journal = {Sbornik. Mathematics},
pages = {305--323},
publisher = {mathdoc},
volume = {49},
number = {2},
year = {1984},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1984_49_2_a2/}
}
TY - JOUR AU - G. V. Zhdanova TI - Scattering of plane longitudinal elastic waves by a~slender cavity of revolution. The case of axial incidence JO - Sbornik. Mathematics PY - 1984 SP - 305 EP - 323 VL - 49 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1984_49_2_a2/ LA - en ID - SM_1984_49_2_a2 ER -
G. V. Zhdanova. Scattering of plane longitudinal elastic waves by a~slender cavity of revolution. The case of axial incidence. Sbornik. Mathematics, Tome 49 (1984) no. 2, pp. 305-323. http://geodesic.mathdoc.fr/item/SM_1984_49_2_a2/