Operator-valued pseudodifferential operators and the resolvent of a degenerate elliptic operator
Sbornik. Mathematics, Tome 49 (1984) no. 2, pp. 553-567 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper the author constructs an asymptotic expansion of the resolvent of the operator of the Dirichlet problem for an elliptic equation of divergence form with a power degeneracy on the boundary. To construct the expansion a variant of the technique of pseudodifferential operators ($\Psi$DO's) with operator-valued symbols is used, in combination with the technique of “ordinary” scalar $\Psi$DO's. The difference between the resolvent and the approximation thus obtained is an integral operator whose kernel decreases at infinity faster than any power of the spectral parameter. In a neighborhood of the boundary this operator smooths only in directions tangent to the boundary. Bibliography: 16 titles.
@article{SM_1984_49_2_a17,
     author = {A. I. Karol'},
     title = {Operator-valued pseudodifferential operators and the resolvent of a degenerate elliptic operator},
     journal = {Sbornik. Mathematics},
     pages = {553--567},
     year = {1984},
     volume = {49},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_49_2_a17/}
}
TY  - JOUR
AU  - A. I. Karol'
TI  - Operator-valued pseudodifferential operators and the resolvent of a degenerate elliptic operator
JO  - Sbornik. Mathematics
PY  - 1984
SP  - 553
EP  - 567
VL  - 49
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1984_49_2_a17/
LA  - en
ID  - SM_1984_49_2_a17
ER  - 
%0 Journal Article
%A A. I. Karol'
%T Operator-valued pseudodifferential operators and the resolvent of a degenerate elliptic operator
%J Sbornik. Mathematics
%D 1984
%P 553-567
%V 49
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1984_49_2_a17/
%G en
%F SM_1984_49_2_a17
A. I. Karol'. Operator-valued pseudodifferential operators and the resolvent of a degenerate elliptic operator. Sbornik. Mathematics, Tome 49 (1984) no. 2, pp. 553-567. http://geodesic.mathdoc.fr/item/SM_1984_49_2_a17/

[1] Birman M. Sh., Solomyak M. Z., “Asimptotika spektra variatsionnykh zadach na resheniyakh ellipticheskikh uravnenii”, Sib. matem. zh., 20:1 (1979), 3–22 | MR | Zbl

[2] Grushin V. V., “Gipoellipticheskie differentsialnye uravneniya i psevdodifferentsialnye operatory s operatornoznachnymi simvolami”, Matem. sb., 88 (130) (1972), 504–521 | Zbl

[3] Grushin V. V., “Postroenie parametriksa dlya vyrozhdayuschikhsya ellipticheskikh operatorov metodom dvukhmasshtabnykh asimptoticheskikh razlozhenii”, Funkts. analiz i ego pril., 11:2 (1977), 76–77 | MR | Zbl

[4] Karol A. I., “O $\zeta$-funktsii vyrozhdayuscheisya ellipticheskoi kraevoi zadachi Dirikhle”, Dokl. AN SSSR, 260:1 (1981), 20–22 | MR | Zbl

[5] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977, 455 pp. | MR

[6] Khardi, Littlvud, Polia, Neravenstva, IL, M., 1948, 456 pp.

[7] Shubin M. A., Psevdodifferentsialnye operatory i spektralnaya teoriya, Nauka, M., 1978, 279 pp. | MR

[8] Agmon S., “On kernels, eigenvalues and eigenfunctions of operators related to elliptic problems”, Comm. Pure Appl. Math., 18 (1965), 627–663 | DOI | MR | Zbl

[9] Bolley P., Camus J., Pham The Lai, “Noyau, résolvante et valeurs propres d'une classe d'opérateurs elliptiques et dégénérés”, Lecture Notes in Math., 660, 1978, 33–46 | MR | Zbl

[10] Boutet de Monvel, “Boundary problems for pseudodifferential equations”, Acta Math., 126:1 (1971), 11–51 | DOI | MR | Zbl

[11] Grubb G., “La résolvante d'un problème aux limites pseudo-différentiel elliptique”, C. R. Acad. Sc. Paris Série 1, 292, 1981, 625–627 | MR | Zbl

[12] Luke G., “Pseudodifferential operators on vector bundles”, J. Diff. Equat., 12 (1972), 566–589 | DOI | MR | Zbl

[13] Métivier G., “Comportement asymptotique des valeurs propres d'opérateurs elliptiques dégénérés”, Astérisque, 34–35, Soc. Math. de France, 1976, 215–249 | MR | Zbl

[14] Seeley R. T., “The resolvent of an elliptic boundary problem”, Amer. J. Math., 91:4 (1969), 889–920 | DOI | MR | Zbl