Lie algebras with an algebraic adjoint representation
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 49 (1984) no. 2, pp. 537-552
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper it is proved that a Lie algebra over a field of characteristic 0 with an algebraic adjoint representation is locally finite dimensional, provided the algebra satisfies a polynomial identity. In particular, a Lie algebra (over a field of characteristic 0) whose adjoint representation is algebraic of bounded degree is locally finite dimensional.
Bibliography: 22 titles.
			
            
            
            
          
        
      @article{SM_1984_49_2_a16,
     author = {E. I. Zel'manov},
     title = {Lie algebras with an algebraic adjoint representation},
     journal = {Sbornik. Mathematics},
     pages = {537--552},
     publisher = {mathdoc},
     volume = {49},
     number = {2},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_49_2_a16/}
}
                      
                      
                    E. I. Zel'manov. Lie algebras with an algebraic adjoint representation. Sbornik. Mathematics, Tome 49 (1984) no. 2, pp. 537-552. http://geodesic.mathdoc.fr/item/SM_1984_49_2_a16/
