Lie algebras with an algebraic adjoint representation
Sbornik. Mathematics, Tome 49 (1984) no. 2, pp. 537-552

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper it is proved that a Lie algebra over a field of characteristic 0 with an algebraic adjoint representation is locally finite dimensional, provided the algebra satisfies a polynomial identity. In particular, a Lie algebra (over a field of characteristic 0) whose adjoint representation is algebraic of bounded degree is locally finite dimensional. Bibliography: 22 titles.
@article{SM_1984_49_2_a16,
     author = {E. I. Zel'manov},
     title = {Lie algebras with an algebraic adjoint representation},
     journal = {Sbornik. Mathematics},
     pages = {537--552},
     publisher = {mathdoc},
     volume = {49},
     number = {2},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_49_2_a16/}
}
TY  - JOUR
AU  - E. I. Zel'manov
TI  - Lie algebras with an algebraic adjoint representation
JO  - Sbornik. Mathematics
PY  - 1984
SP  - 537
EP  - 552
VL  - 49
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1984_49_2_a16/
LA  - en
ID  - SM_1984_49_2_a16
ER  - 
%0 Journal Article
%A E. I. Zel'manov
%T Lie algebras with an algebraic adjoint representation
%J Sbornik. Mathematics
%D 1984
%P 537-552
%V 49
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1984_49_2_a16/
%G en
%F SM_1984_49_2_a16
E. I. Zel'manov. Lie algebras with an algebraic adjoint representation. Sbornik. Mathematics, Tome 49 (1984) no. 2, pp. 537-552. http://geodesic.mathdoc.fr/item/SM_1984_49_2_a16/