Lie algebras with an algebraic adjoint representation
Sbornik. Mathematics, Tome 49 (1984) no. 2, pp. 537-552 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper it is proved that a Lie algebra over a field of characteristic 0 with an algebraic adjoint representation is locally finite dimensional, provided the algebra satisfies a polynomial identity. In particular, a Lie algebra (over a field of characteristic 0) whose adjoint representation is algebraic of bounded degree is locally finite dimensional. Bibliography: 22 titles.
@article{SM_1984_49_2_a16,
     author = {E. I. Zel'manov},
     title = {Lie algebras with an algebraic adjoint representation},
     journal = {Sbornik. Mathematics},
     pages = {537--552},
     year = {1984},
     volume = {49},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_49_2_a16/}
}
TY  - JOUR
AU  - E. I. Zel'manov
TI  - Lie algebras with an algebraic adjoint representation
JO  - Sbornik. Mathematics
PY  - 1984
SP  - 537
EP  - 552
VL  - 49
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1984_49_2_a16/
LA  - en
ID  - SM_1984_49_2_a16
ER  - 
%0 Journal Article
%A E. I. Zel'manov
%T Lie algebras with an algebraic adjoint representation
%J Sbornik. Mathematics
%D 1984
%P 537-552
%V 49
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1984_49_2_a16/
%G en
%F SM_1984_49_2_a16
E. I. Zel'manov. Lie algebras with an algebraic adjoint representation. Sbornik. Mathematics, Tome 49 (1984) no. 2, pp. 537-552. http://geodesic.mathdoc.fr/item/SM_1984_49_2_a16/

[1] Kostrikin A. I., “O probleme Bernsaida”, Izv. AN SSSR. Seriya matem., 23 (1959), 3–34 | MR

[2] Kurosh A. G., “Sovremennoe sostoyanie teorii kolets i algebr”, UMN, 6:1 (1951), 3–15 | MR | Zbl

[3] Golod E. S., “O nil-algebrakh i finitno-approksimiruemykh gruppakh”, Izv. AN SSSR. Seriya matem., 28 (1964), 273–276 | MR | Zbl

[4] Dnestrovskaya tetrad, nereshennye problemy teorii kolets i modulei, Novosibirsk, 1976

[5] Loos O., Jordan Pairs, Springer-Verlag, Berlin, 1975 | MR | Zbl

[6] Zelmanov E. I., “Prostye iordanovy pary”, Tezisy soobsch. 5-go Vsesoyuznogo simpoziuma po teorii kolets i modulei, Novosibirsk, 1982, 32

[7] Beukart G., “On inner ideals and ad-nilpotent elements of Lie algebras”, Trans. Amer. Math. Soc., 232:1 (1977), 61–81 | DOI | MR

[8] Kostrikin A. I., “Sendvichi v algebrakh Li”, Matem. sb., 110 (152) (1979), 3–12 | MR | Zbl

[9] Filippov V. T., O nil-elementakh v algebrakh Maltseva, Dep. No 2499-80 (Sib. matem. zh., 1981, t. 22, No 3) | Zbl

[10] Zelmanov E. I., “K teorii iordanovykh algebr”, Tezisy soobsch. 15-i Vsesoyuznoi algebraicheskoi konferentsii, Ch. 2, Krasnoyarsk, 1979, 65

[11] Plotkin B. I., “Ob algebraicheskikh mnozhestvakh elementov v gruppakh i algebrakh Li”, UMN, 13:6 (1958), 133–138 | MR | Zbl

[12] Grishkov A. N., “O lokalnoi nilpotentnosti ideala algebry Li, porozhdennogo elementami 2-go poryadka”, Sib. matem. zh., 23:1 (1981), 181–183 | MR

[13] Dzhekobson N., Algebry Li, Mir, M., 1964 | MR

[14] Markov V. T., “O razmernosti nekommutativnykh affinnykh algebr”, Izv. AN SSSR. Seriya matem., 37 (1973), 284–288 | Zbl

[15] Rowen L. H., “Some results on the center of a ring with polynomial identity”, Bull. Amer. Math. Soc., 1973, no. 1, 219–223 | DOI | MR | Zbl

[16] Zhevlakov K. A., Slinko A. M., Shestakov I. P., Shirshov A. I., Koltsa, blizkie k assotsiativnym, Nauka, M., 1978 | MR | Zbl

[17] Zelmanov E. I., “Absolyutnye deliteli nulya v iordanovykh parakh i algebrakh Li”, Matem. sb., 112 (154) (1980), 611–629 | MR

[18] Bokut L. A., Assotsiativnye koltsa. II, izd-vo NGU, Novosibirsk, 1977

[19] Amitsur S., “Algebras over infinite fields”, Proc. Amer. Math. Soc., 7:1 (1956), 34–48 | DOI | MR

[20] McCrimmon K., “The radial of a Jordan algebra”, Proc. Nat. Acad. Sci. USA, 62:3 (1962), 671–678 | DOI | MR

[21] Hogben L., McCrimmon K., “Maximal modular inner ideals and the Jacobson radical of Jordan algebras”, J. Algebra, 68:1 (1981), 155–169 | DOI | MR | Zbl

[22] Bahturin J. A., “Simple Lie Algebras Satisfying a Nontrivial Identity”, Serdika, 2:3 (1976), 241–246 | MR | Zbl