On tightly embedded subgroups of finite groups
Sbornik. Mathematics, Tome 49 (1984) no. 2, pp. 515-524 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper the structure of a nonsubnormal tightly embedded subgroup is determined. Bibliography: 16 titles.
@article{SM_1984_49_2_a14,
     author = {A. A. Makhnev},
     title = {On tightly embedded subgroups of finite groups},
     journal = {Sbornik. Mathematics},
     pages = {515--524},
     year = {1984},
     volume = {49},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_49_2_a14/}
}
TY  - JOUR
AU  - A. A. Makhnev
TI  - On tightly embedded subgroups of finite groups
JO  - Sbornik. Mathematics
PY  - 1984
SP  - 515
EP  - 524
VL  - 49
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1984_49_2_a14/
LA  - en
ID  - SM_1984_49_2_a14
ER  - 
%0 Journal Article
%A A. A. Makhnev
%T On tightly embedded subgroups of finite groups
%J Sbornik. Mathematics
%D 1984
%P 515-524
%V 49
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1984_49_2_a14/
%G en
%F SM_1984_49_2_a14
A. A. Makhnev. On tightly embedded subgroups of finite groups. Sbornik. Mathematics, Tome 49 (1984) no. 2, pp. 515-524. http://geodesic.mathdoc.fr/item/SM_1984_49_2_a14/

[1] Makhnev A. A., “O porozhdenii konechnykh grupp klassami involyutsii”, Matem. sb., 111 (153) (1980), 266–278 | MR | Zbl

[2] Aschbacher M., “Finite groups generated by odd transpositions”, Math. Z., 127 (1972), 45–56 ; J. Algebra, 26 (1973), 451–491 | DOI | MR | Zbl | DOI | MR

[3] Aschbacher M., “On finite groups of component type”, Ill. J. Math., 19 (1975), 87–115 | MR | Zbl

[4] Aschbacher M., “Tightly embedded subgroups of finite groups”, J. Algebra, 42 (1976), 85–101 | DOI | MR | Zbl

[5] Aschbacher M., “Finite groups in which the generalized Fitting group of the centralizer of some involution is symplectic but not extraspecial”, Comm. Algebra, 4 (1976), 595–616 | DOI | MR | Zbl

[6] Aschbacher M., “A characterization of Chevalley groups over fields of odd order”, Ann. Math., 106 (1977), 353–468 | DOI | MR | Zbl

[7] Foot R., “Aschbachers blocks”, Proc. Symp. Pure Math., 37 (1980), 37–42 | MR | Zbl

[8] Gorenstein D., Harada K., “On finite groups with Sylow 2-subgroups of type $A_n$, $n=8,9,10,11$”, J. Algebra, 19 (1971), 185–227 | DOI | MR | Zbl

[9] Gorenstein D., Harada K., “A characterization of Janko's two new simple groups”, J. Fac. Sci. Univ. Tokio, 16 (1970), 331–406 | MR | Zbl

[10] Gorenstein D., Harada K., “Finite groups whose 2-subgroups are generated by at most 4 elements”, Memoirs Amer. Math. Soc., 147 (1974), 1–464 | MR

[11] McKay J., Wales D., “The multipliers of the simple groups of order 604, 800 and 50, 232, 960”, J. Algebra, 17 (1971), 262–272 | DOI | MR | Zbl

[12] Solomon R., Timmesfeld F., “A note on tightly embedded subgroups”, Archiv der Math., 31 (1978), 217–223 | DOI | MR | Zbl

[13] Stellmacher B., “On finite groups whose Sylow 2-subgroups are contained in unique maximal subgroups”, Proc. Symp. Pure Math., 37 (1980), 123–126 | MR

[14] Suzuki M., “Finite groups in which the centralizer of any element of order 2 is 2-closed”, Ann. Math., 82 (1965), 191–212 | DOI | MR | Zbl

[15] Timmesfeld F., “On the structure 2-local subgroups in finite groups”, Math. Z., 161 (1978), 119–136 | DOI | MR | Zbl

[16] Timmesfeld F., “Groups generated by root-involutions”, J. Algebra, 33 (1975), 75–134 ; 35, 367–441 | DOI | MR | Zbl | DOI | Zbl