Quasivarieties of groups closed with respect to restricted wreath products
Sbornik. Mathematics, Tome 49 (1984) no. 2, pp. 503-514 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper studies quasivarieties of groups, closed under restricted wreath products. It is shown that if a class $\mathfrak R$ of groups is closed with respect to restricted wreath products, then the quasivariety generated by $\mathfrak R$ is also closed under restricted wreath products. The base rank of a nontrivial quasivariety, closed under restricted wreath products, is found to be two. Conditions are given that ensure that a countable group from a given quasivariety is isomorphically embeddable in a 2-generator group from the same quasivariety. Finally, the cardinality of the set of all quasivarieties that consist of torsionfree groups and are closed with respect to restricted wreath products is computed. Bibliography: 12 titles.
@article{SM_1984_49_2_a13,
     author = {A. I. Budkin},
     title = {Quasivarieties of groups closed with respect to restricted wreath products},
     journal = {Sbornik. Mathematics},
     pages = {503--514},
     year = {1984},
     volume = {49},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_49_2_a13/}
}
TY  - JOUR
AU  - A. I. Budkin
TI  - Quasivarieties of groups closed with respect to restricted wreath products
JO  - Sbornik. Mathematics
PY  - 1984
SP  - 503
EP  - 514
VL  - 49
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1984_49_2_a13/
LA  - en
ID  - SM_1984_49_2_a13
ER  - 
%0 Journal Article
%A A. I. Budkin
%T Quasivarieties of groups closed with respect to restricted wreath products
%J Sbornik. Mathematics
%D 1984
%P 503-514
%V 49
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1984_49_2_a13/
%G en
%F SM_1984_49_2_a13
A. I. Budkin. Quasivarieties of groups closed with respect to restricted wreath products. Sbornik. Mathematics, Tome 49 (1984) no. 2, pp. 503-514. http://geodesic.mathdoc.fr/item/SM_1984_49_2_a13/

[1] Budkin A. I., “Kvazitozhdestva nilpotentnykh grupp i grupp s odnim opredelyayuschim sootnosheniem”, Algebra i logika, 18:2 (1979), 127–136 | MR | Zbl

[2] Budkin A. I., Gorbunov V. A., “K teorii kvazimnogoobrazii algebraicheskikh sistem”, Algebra i logika, 14:2 (1975), 123–142 | MR | Zbl

[3] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, Nauka, M., 1972 | MR | Zbl

[4] Kokorin A. I., Kopytov V. M., Lineino uporyadochennye gruppy, Nauka, M., 1972 | MR | Zbl

[5] Maltsev A. I., Algebraicheskie sistemy, Nauka, M., 1970 | MR

[6] Neiman X., Mnogoobraziya grupp, Mir, M., 1969 | MR

[7] Romankov V. A., “O podgruppakh prokonechnykh grupp”, VII Vsesoyuznyi simpozium po teorii grupp. Tezisy dokladov, Krasnoyarsk, 1980

[8] Rumyantsev A. K., “Vlozheniya schetnykh finito approksimiruemykh grupp”, Sib. matem. zh., 22:3 (1981), 219–221 | MR

[9] Higman G., Finitely presented infinite simple groups, Vol. 8, Notes Pure Math., Austral. Nat. Univ., Canberra, 1974 | MR

[10] Neumann B. H., Neumann H., “Embedding theorems for groups”, J. London Math. Soc., 34:136 (1959), 465–479 | DOI | MR | Zbl

[11] Neumann P. M., “On the structure of standard wreath products of groups”, Math. Z., 84:4 (1964), 343–373 | DOI | MR | Zbl

[12] Wilson J. S., “Imbedding theorems for residually finite groups”, Math. Z., 174:2 (1980), 149–157 | DOI | MR | Zbl