On the approximation of periodic functions by $(C,\alpha)$ means
Sbornik. Mathematics, Tome 49 (1984) no. 2, pp. 491-501

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper considers the problem of obtaining the principal term in the deviations of periodic functions in the space $L_p([-\pi,\pi])$, $1\leqslant p\leqslant\infty$, from their Cesàro means of arbitrary order. Bibliography: 7 titles.
@article{SM_1984_49_2_a12,
     author = {M. M. Lekishvili},
     title = {On the approximation of periodic functions by $(C,\alpha)$ means},
     journal = {Sbornik. Mathematics},
     pages = {491--501},
     publisher = {mathdoc},
     volume = {49},
     number = {2},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_49_2_a12/}
}
TY  - JOUR
AU  - M. M. Lekishvili
TI  - On the approximation of periodic functions by $(C,\alpha)$ means
JO  - Sbornik. Mathematics
PY  - 1984
SP  - 491
EP  - 501
VL  - 49
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1984_49_2_a12/
LA  - en
ID  - SM_1984_49_2_a12
ER  - 
%0 Journal Article
%A M. M. Lekishvili
%T On the approximation of periodic functions by $(C,\alpha)$ means
%J Sbornik. Mathematics
%D 1984
%P 491-501
%V 49
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1984_49_2_a12/
%G en
%F SM_1984_49_2_a12
M. M. Lekishvili. On the approximation of periodic functions by $(C,\alpha)$ means. Sbornik. Mathematics, Tome 49 (1984) no. 2, pp. 491-501. http://geodesic.mathdoc.fr/item/SM_1984_49_2_a12/