Some new nonlinear evolution equations integrable by the inverse problem method
Sbornik. Mathematics, Tome 49 (1984) no. 2, pp. 461-489

Voir la notice de l'article provenant de la source Math-Net.Ru

Several new nonlinear evolution equations integrable by the inverse problem method are obtained. The method applied in finding these equations is believed to be essentially new. The comparison of that method with other methods for finding nonlinear evolution equations integrable by the inverse problem method is given. In particular, it is shown that the methods using the Heisenberg equation (the so-called Lax representation) are not suitable to obtain the equations studied here. Bibliography: 23 titles.
@article{SM_1984_49_2_a11,
     author = {V. K. Mel'nikov},
     title = {Some new nonlinear evolution equations integrable by the inverse problem method},
     journal = {Sbornik. Mathematics},
     pages = {461--489},
     publisher = {mathdoc},
     volume = {49},
     number = {2},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_49_2_a11/}
}
TY  - JOUR
AU  - V. K. Mel'nikov
TI  - Some new nonlinear evolution equations integrable by the inverse problem method
JO  - Sbornik. Mathematics
PY  - 1984
SP  - 461
EP  - 489
VL  - 49
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1984_49_2_a11/
LA  - en
ID  - SM_1984_49_2_a11
ER  - 
%0 Journal Article
%A V. K. Mel'nikov
%T Some new nonlinear evolution equations integrable by the inverse problem method
%J Sbornik. Mathematics
%D 1984
%P 461-489
%V 49
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1984_49_2_a11/
%G en
%F SM_1984_49_2_a11
V. K. Mel'nikov. Some new nonlinear evolution equations integrable by the inverse problem method. Sbornik. Mathematics, Tome 49 (1984) no. 2, pp. 461-489. http://geodesic.mathdoc.fr/item/SM_1984_49_2_a11/