On invariant measures for classical dynamical systems with infinite-dimensional phase space
Sbornik. Mathematics, Tome 49 (1984) no. 2, pp. 291-303
Cet article a éte moissonné depuis la source Math-Net.Ru
The Kubo–Martin–Schwinger state is constructed for a Hamiltonian dynamical system whose phase space is Hilbert space, with Hamiltonian representable as the sum of two terms: the square of the norm and a function that is smooth on the completion of the original space in the nuclear norm. Bibliography: 5 titles.
@article{SM_1984_49_2_a1,
author = {A. A. Arsen'ev},
title = {On invariant measures for classical dynamical systems with infinite-dimensional phase space},
journal = {Sbornik. Mathematics},
pages = {291--303},
year = {1984},
volume = {49},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1984_49_2_a1/}
}
A. A. Arsen'ev. On invariant measures for classical dynamical systems with infinite-dimensional phase space. Sbornik. Mathematics, Tome 49 (1984) no. 2, pp. 291-303. http://geodesic.mathdoc.fr/item/SM_1984_49_2_a1/
[1] Segal I., “Differential operator in the manifold of rolutions of a non-linear differential equations. I, II”, J. Math. Pure Appl., 44:1–2 (1965), 71–105 | MR
[2] Segal I., “Dispersion for non-linear relativistic equations”, Ann. Sci. Ecole Norm. Super (4), 1:4 (1968), 459–497 | MR | Zbl
[3] Chernoff P. R., Maroden J. E., Properties of Infinite Dimensional Hamiltonian Systems, No 425, Lecture Notes in Math., 1974
[4] Vinogradov A. M., Kupershmidt B. A., “Struktura gamiltonovoi mekhaniki”, UMN, 32:4 (1977), 175–236 | MR | Zbl
[5] Go Kh.-S., Gaussovskie mery v banakhovykh prostranstvakh, Mir, M., 1979