On invariant measures for classical dynamical systems with infinite-dimensional phase space
Sbornik. Mathematics, Tome 49 (1984) no. 2, pp. 291-303 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Kubo–Martin–Schwinger state is constructed for a Hamiltonian dynamical system whose phase space is Hilbert space, with Hamiltonian representable as the sum of two terms: the square of the norm and a function that is smooth on the completion of the original space in the nuclear norm. Bibliography: 5 titles.
@article{SM_1984_49_2_a1,
     author = {A. A. Arsen'ev},
     title = {On invariant measures for classical dynamical systems with infinite-dimensional phase space},
     journal = {Sbornik. Mathematics},
     pages = {291--303},
     year = {1984},
     volume = {49},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_49_2_a1/}
}
TY  - JOUR
AU  - A. A. Arsen'ev
TI  - On invariant measures for classical dynamical systems with infinite-dimensional phase space
JO  - Sbornik. Mathematics
PY  - 1984
SP  - 291
EP  - 303
VL  - 49
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1984_49_2_a1/
LA  - en
ID  - SM_1984_49_2_a1
ER  - 
%0 Journal Article
%A A. A. Arsen'ev
%T On invariant measures for classical dynamical systems with infinite-dimensional phase space
%J Sbornik. Mathematics
%D 1984
%P 291-303
%V 49
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1984_49_2_a1/
%G en
%F SM_1984_49_2_a1
A. A. Arsen'ev. On invariant measures for classical dynamical systems with infinite-dimensional phase space. Sbornik. Mathematics, Tome 49 (1984) no. 2, pp. 291-303. http://geodesic.mathdoc.fr/item/SM_1984_49_2_a1/

[1] Segal I., “Differential operator in the manifold of rolutions of a non-linear differential equations. I, II”, J. Math. Pure Appl., 44:1–2 (1965), 71–105 | MR

[2] Segal I., “Dispersion for non-linear relativistic equations”, Ann. Sci. Ecole Norm. Super (4), 1:4 (1968), 459–497 | MR | Zbl

[3] Chernoff P. R., Maroden J. E., Properties of Infinite Dimensional Hamiltonian Systems, No 425, Lecture Notes in Math., 1974

[4] Vinogradov A. M., Kupershmidt B. A., “Struktura gamiltonovoi mekhaniki”, UMN, 32:4 (1977), 175–236 | MR | Zbl

[5] Go Kh.-S., Gaussovskie mery v banakhovykh prostranstvakh, Mir, M., 1979