On invariant measures for classical dynamical systems with infinite-dimensional phase space
Sbornik. Mathematics, Tome 49 (1984) no. 2, pp. 291-303
Voir la notice de l'article provenant de la source Math-Net.Ru
The Kubo–Martin–Schwinger state is constructed for a Hamiltonian dynamical system whose phase space is Hilbert space, with Hamiltonian representable as the sum of two terms: the square of the norm and a function that is smooth on the completion of the original space in the nuclear norm.
Bibliography: 5 titles.
@article{SM_1984_49_2_a1,
author = {A. A. Arsen'ev},
title = {On invariant measures for classical dynamical systems with infinite-dimensional phase space},
journal = {Sbornik. Mathematics},
pages = {291--303},
publisher = {mathdoc},
volume = {49},
number = {2},
year = {1984},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1984_49_2_a1/}
}
A. A. Arsen'ev. On invariant measures for classical dynamical systems with infinite-dimensional phase space. Sbornik. Mathematics, Tome 49 (1984) no. 2, pp. 291-303. http://geodesic.mathdoc.fr/item/SM_1984_49_2_a1/