Methods of constructing approximate self-similar solutions of nonlinear heat equations. IV
Sbornik. Mathematics, Tome 49 (1984) no. 1, pp. 125-149 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Asymptotic properties of nonnegative solutions of quasilinear parabolic equations $$ \frac{\partial u}{\partial t}=\frac\partial{\partial x}\bigg(k(u)\frac{\partial u}{\partial x}\bigg);\qquad k(u)>0\quad\text{for}\quad u>0 $$ with coefficients $k(u)$ of rather general form are studied in the paper. The investigation is carried out by constructing approximate self-similar solutions which do not satisfy the original equation but nevertheless correctly describe the asymptotic behavior of solutions of the boundary value or Cauchy problems considered. On the basis of a unified method “transformation laws” are established for well-known self-similar solutions of an equation with a power nonlinearity $\dfrac{\partial u}{\partial t}=\dfrac\partial{\partial x}\biggl(u^\sigma\dfrac{\partial u}{\partial x}\biggr)$ (the cases $\sigma=0$ and $\sigma>0$ are considered separately) which result from small changes of the coefficient $u^\sigma\to k(u)$ (for example, transformations of the form $u^\sigma\to u^\sigma\ln(1+u)$, $ u^\sigma\to u^\sigma\exp[|\ln u|^{1/2}]$, etc.). Figures: 1. Bibliography: 24 titles.
@article{SM_1984_49_1_a8,
     author = {V. A. Galaktionov and A. A. Samarskii},
     title = {Methods of constructing approximate self-similar solutions of nonlinear heat {equations.~IV}},
     journal = {Sbornik. Mathematics},
     pages = {125--149},
     year = {1984},
     volume = {49},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1984_49_1_a8/}
}
TY  - JOUR
AU  - V. A. Galaktionov
AU  - A. A. Samarskii
TI  - Methods of constructing approximate self-similar solutions of nonlinear heat equations. IV
JO  - Sbornik. Mathematics
PY  - 1984
SP  - 125
EP  - 149
VL  - 49
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1984_49_1_a8/
LA  - en
ID  - SM_1984_49_1_a8
ER  - 
%0 Journal Article
%A V. A. Galaktionov
%A A. A. Samarskii
%T Methods of constructing approximate self-similar solutions of nonlinear heat equations. IV
%J Sbornik. Mathematics
%D 1984
%P 125-149
%V 49
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1984_49_1_a8/
%G en
%F SM_1984_49_1_a8
V. A. Galaktionov; A. A. Samarskii. Methods of constructing approximate self-similar solutions of nonlinear heat equations. IV. Sbornik. Mathematics, Tome 49 (1984) no. 1, pp. 125-149. http://geodesic.mathdoc.fr/item/SM_1984_49_1_a8/

[1] Galaktionov V. A., Samarskii A. A., “Metody postroeniya priblizhennykh avtomodelnykh reshenii nelineinykh uravnenii teploprovodnosti. I”, Matem. sb., 118(160) (1982), 292–322

[2] Galaktionov V. A., Samarskii A. A., “Metody postroeniya priblizhennykh avtomodelnykh reshenii nelineinykh uravnenii teploprovodnosti. II”, Matem. sb., 118(160) (1982), 435–455 | MR | Zbl

[3] Galaktionov V. A., Samarskii A. A., “Metody postroeniya priblizhennykh avtomodelnykh reshenii nelineinykh uravnenii teploprovodnosti. III”, Matem. sb., 120(162) (1983), 3–21 | MR | Zbl

[4] Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Samarskii A. A., Deistvie granichnykh rezhimov s obostreniem na sredu s postoyannoi teploprovodnostyu, Preprint No 28, IPM AN SSSR, M., 1979 | MR

[5] Galaktionov V. A., “O priblizhennykh avtomodelnykh resheniyakh uravnenii tipa nelineinoi teploprovodnosti”, Diff. uravneniya, 16:9 (1980), 1660–1676 | MR | Zbl

[6] Samarskii A. A., “O novykh metodakh issledovaniya asimptoticheskikh svoistv parabolicheskikh uravnenii”, Trudy Matem. in-ta im. V. A. Steklova AN SSSR, 158 (1981), 153–162 | MR | Zbl

[7] Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Samarskii A. A., “Ob odnom podkhode k sravneniyu reshenii parabolicheskikh uravnenii”, ZhVM i MF, 19:6 (1979), 1451–1461 | MR | Zbl

[8] Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Samarskii A. A., “Lokalizatsiya tepla v nelineinykh sredakh”, Diff. uravneniya, 17:10 (1981), 1826–1841 | MR | Zbl

[9] Kurdyumov S. P., “Sobstvennye funktsii goreniya nelineinoi sredy i konstruktivnye zakony postroeniya ee organizatsii”, Sovremennye problemy matematicheskoi fiziki i vychislitelnoi matematiki, Nauka, M., 1982, 217–243 | MR

[10] Galaktionov V. A., Zmitrenko N. V., Kurdyumov S. P., Mikhailov A. P., “Effekt metastabilnoi lokalizatsii tepla v srede s nelineinoi teploprovodnostyu”, DAN AN SSSR, 223:6 (1975), 1344–1347

[11] Oleinik O. A., Kalashnikov A. S., Chzhou-Yui-Lin, “Zadacha Koshi i kraevye zadachi dlya uravnenii tipa nestatsionarnoi filtratsii”, Izv. AN SSSR. Seriya matem., 22 (1958), 667–704 | MR | Zbl

[12] Fridman A., Uravneniya v chastnykh proizvodnykh parabolicheskogo tipa, Mir, M., 1968

[13] Lione Zh-L., Madzhenes E., Neodnooodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971

[14] Zeldovich Ya. B., Barenblatt G. I., “Ob asimptoticheskikh svoistvakh avtomodelnykh reshenii uravnenii nestatsionarnoi filtratsii gaza”, DAN AN SSSR, 118:4 (1958), 671–674

[15] Zeldovich Ya. B., Raizer Yu. P., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii, Nauka, M., 1966

[16] Benilan P., Crandall M. G., “The continuous dependence on of solutions for $u_t-(u)=0$”, Indiana Univ. Math. J., 30 (1981), 161–177 | DOI | MR | Zbl

[17] Brezis H., Crandall M. G., “Uniqueness of solutions of the initial-value problem for $u_t-(u)=0$”, J. Math. Pure Appl., 58 (1979), 153–163 | MR | Zbl

[18] Friedman A., Kamin S., “The asymptotic behavior of gas in an $n$-dimensional porous medium”, Trans. Amer. Math. Soc., 262 (1980), 551–563 | DOI | MR | Zbl

[19] Aronson D. G., Benilan P., “Régularité des solutions de l'equation des milieux poreux dan $R^N$”, Comp. Rendus Acad. Sci. Paris, 288, sect. A (1979), 103–105 | MR | Zbl

[20] Zeldovich Ya. B., Kompaneets A. S., “K teorii rasprostraneniya tepla pri teploprovodnosti, zavisyaschei ot temperatury”, Sbornik, posvyaschennyi 70-letiyu akademika A. F. Ioffe, Izd-vo AN SSSR, M., 1950, 61–71

[21] Andriankin E. I., Ryzhov O. S., “Rasprostranenie teplovoi volny, blizkoi k sfericheskoi”, DAN SSSR, 115:5 (1957), 882–885 | MR

[22] Kamin S., “Similar solutions and the asymptotics of filtration equations”, Arch. Rat Mech. Anal, 60 (1976), 171–183 | MR | Zbl

[23] Bluman G., Kumei S., “On the remarkable nonlinear diffusion equation $(u/x)a(u+b)^{-2}(u/x)-(u/t)=0$”, J. Math. Phys., 21 (1980), 1019–1023 | DOI | MR | Zbl

[24] Ovsyannikov L. V., “Gruppovye svoistva i invariantnye resheniya uravneniya nelineinoi teploprovodnosti”, DAN AN SSSR, 125:3 (1959), 492–495 | Zbl